Improved Visual Relocalization by Discovering Anchor Points

Soham Saha

Girish Varma

C.V. Jawahar

The Visual Relocalization Problem

- Given an image, predict 6-DOF of camera. That is
 - location [3 spatial coordinates]
 - pose [3 angles].
- Needed in Autonomous Navigation applications since
 - GPS is noisy and doesn't work indoors
 - Gives redundancy, in case GPS fails.

Cambridge Landmarks (Outdoor)

6-DOF Coordinates

DNN based approaches

- Image Retrieval Based:
 - Extract image features for all images in dataset.
 - Compute nearest neighbour
- PoseNet approach:
 - Use neural network to directly predict 6-DOF.
 - Train DNN by regressing against ground truth 6-DOF in dataset.

Defining Anchor Points

- Humans typically identify their location relative to other locations or landmarks.
- Inspired from this, we propose an end to end trainable model.
- Define landmarks as
 anchor points and predict
 distances relative to them.

Anchor Point based Approach

Can we discover the most relevant anchor point?

Discovering Relevant Anchor Points

- We have ground truth for all the anchor points.
- We predict the offsets with respect to all of those anchor points.
- Use classification head as confidence score and do a Weighted MSE loss.

<u>Frame Coordinates <x,y></x,y></u>	Anchor points Coordinates <x,y></x,y>	<u>Offsets <x,y></x,y></u>
4.25m, 7.51m [Reference Frame]	3.15m, 6.75m [Anchor point 1]	1.10m, 0.76m
	3.60m, 7.00m [Anchor point 2]	0.65m, 0.51m
	4.05m, 7.25m [Anchor point 3]	0.20m, 0.26m
	4.50m, 7.50m [Anchor point 4]	0.25m, 0.01m

Example of offsets to be predicted for 4 Anchor Points

Network Architecture

Loss Function

Selected Quantitative Results

Saana	Area or	Posenet	Ours (DenseNet)	Ours (GoogleNet)	
	Volume	Geom. Rep. [11]	(w/o cross entropy)	(w/o cross entropy)	
Great Court	$8000m^2$	6.83 <i>m</i> , 3.47°	4.64 <i>m</i> , 3.42°	5.89 <i>m</i> , 3.53 °	
King's College	$5600m^2$	0.88 <i>m</i> , 1.04°	$0.57m, 0.88^{\circ}$	0.79 <i>m</i> , 0.95 °	
Old Hospital	$2000m^2$	3.20 <i>m</i> , 3.29°	$1.21m, 2.55^{\circ}$	2.11 <i>m</i> , 3.05 °	
Shop Facade	$875m^2$	0.88 <i>m</i> , 3.78°	$0.52m, 2.27^{\circ}$	0.77 <i>m</i> , 3.25 °	
St. Mary's Church	$4800m^2$	1.57 <i>m</i> , 3.32°	1.04 <i>m</i> , 2.69°	1.22 <i>m</i> , 3.02 °	
Street	$50000m^2$	20.3 <i>m</i> , 25.5°	7.86 <i>m</i> , 24.2°	11.8 <i>m</i> , 24.3 °	
Chess	$6m^{2}$	0.13 <i>m</i> , 4.48°	0.06 <i>m</i> , 3.89°	0.08 <i>m</i> , 4.12 °	
Fire	$2.5m^2$	0.27 <i>m</i> , 11.3°	0.15 <i>m</i> , 10.3°	0.16 <i>m</i> , 11.1 °	
Head	$1m^{2}$	0.17 <i>m</i> , 13.0°	0.08 <i>m</i> , 10.9°	0.09 <i>m</i> , 11.2 °	
Office	$7.5m^2$	0.19 <i>m</i> , 5.55°	0.09 <i>m</i> , 5.15°	0.11 <i>m</i> , 5.38 °	
Pumpkin	$5m^{2}$	0.26 <i>m</i> , 4.75°	0.10 <i>m</i> , 2.97°	0.14 <i>m</i> , 3.55 °	
Red Kitchen	$18m^{2}$	0.23 <i>m</i> , 5.35°	$0.08m, 4.68^{\circ}$	0.13 <i>m</i> , 5.29 °	
Stairs	$7.5m^2$	0.35 <i>m</i> , 12.4°	0.10 <i>m</i> , 9.26°	0.21 <i>m</i> , 11.9 °	

Selected Quantitative Results

Saana	DenseNet		GoogleNet		MobileNet	
Scelle	(Feature Extractor)		(Feature Extractor)		(Feature Extractor)	
	Performance	FLOPs	Performance	FLOPs	Performance	FLOPs
Kings College	$0.57m, 0.88^\circ$	5008 M	$0.79m, 0.95^{\circ}$	760 M	$0.67m, 0.94^{\circ}$	560 M
Shop Facade	$0.52m, 2.27^{\circ}$	J 770 IVI	$0.77m, 3.25^{\circ}$	/00 101	$0.60m, 2.31^{\circ}$	J07 IVI

Selected Qualitative Results

Scene	Input Frame	Nearest Anchor Point	Learned Anchor Point	
Great Court				
King's College				
Old Hospital				

THANK YOU!

VISIT OUR POSTER FOR MORE DETAILS!

Actively looking for PhD opportunities! sohamsaha.cs@gmail.com