
WACV2018
IEEE Winter Conf. on Applications
of Computer Vision

Pruning

RESULTS

Deep Expander Networks: Efficient Deep Networks from Graph Theory
Ameya Prabhu*, Girish Varma*, Anoop Namboodiri

Center for Visual Information Technology, Kohli Center for Intelligent Systems, IIIT Hyderabad, India

EFFICIENT CNNS

X-CONV LAYERS & X-NETS

Email: ameya.pandurang.prabhu@gmail.com
Code: https://github.com/DrImpossible/Deep-Expander-Networks

DNNs have great accuracies but are resource intensive.
Hence important to study speed/accuracy tradeoffs.

CNNs are especially runtime heavy. Essential to make
CNNs efficient for making them applicable in real-time
and embedded systems.

A. Canziani, A. Paszke, and E. Culurciello. An analysis of deep neural network models for practical applications.arXiv preprint arXiv:1605.07678 , 2016.

Compact, fast in train time

Training in one cycle/phase,
similar to original models.

Bulky full model need not be
trained.

Task-independent
architectures. Generalizable.

Advantages
Model CNNs using Graphs.
sparsity = efficiency

Hypothesise that
expressivity = connectivity

Propose to use expander graphs
that are simultaneously sparse
and well connected

Expander Graphs: Graphs such that neighbourhood of
every subset of vertices expands.

Well studied theory for over 50 years in theoretical
computer science.

There are sparse graphs with O(n) number of edges
that has the expander properties.

A random D-regular graph for D>2, is an expander
with high probability.

...

...

The connections are fixed according to an expander graph
structure. This is a good prior to form a compact networks before
training that is efficiently implementable.

We study X-MobileNet, X-DenseNet, X-ResNet, X-VGG and
X-AlexNet where the Conv layers are replaced by X-Conv layers.

…
.

n

...

...

...

...

O(logn)

G
1

Gt

Theorem 1 (Sensitivity of X-Nets): G1 , G2 ,··· , Gt be D-regular
bipartite expander graphs with n nodes on both sides. Then
every output neuron is sensitive to every input in a Deep
X-Net defined by Gi’s with depth t = O(logn).

Theorem 2 (Mixing in X-Nets): Let S,T be
subsets of input and output nodes in the
X-Net layer defined by G. The number of
edges between S and T is ≈ D |S||T| / n

#Paths ≈ D |S||T|/n

S T S
T

Comparison with Grouped Convolution (G-Conv) with same Sparsity

X-Conv beats G-Conv by 4-5% on MobileNet-0.5

Compression G-Conv
Error

x2 42.55%

x4 50.59%

x8 54.87%

x16 60.97%

X-Conv (Ours)
Error

41.78%

46.00%

50.77%

55.37%

S

T

|T| ≥ (1+)|S|

Wider and Deeper X-DenseNets

Convert your code to use XConv2d and XLinear layers:

from layers import XLinear, XConv2d

nn.Conv2d(...) XConv2d(..., expandSize=128)
nn.Linear(...) XLinear(..., expandSize=256)

PYTORCH IMPLEMENTATION

MAJOR APPROACHES & CHALLENGES

EXPANDER GRAPHS

OUR APPROACH

THEORETICAL PROPERTIES

Wider or Deeper Compressed Networks give better parameter efficiency and accuracy.

 Architecture Design Architecture Search

Depthwise Seperable,
Grouped Convolutions

Trained using RL or
Evolutionary Strategy.

Training process gets more
complicated with newer
hyperparameters.

Ideally should allow training of novel
architectures themselves.

Challenges
Trial and Error methods will not
scale to large datasets.

Train Efficient
Network

Prune Connections

Train Network

Prune Connections

Retrain Weights

Pruning vs Ours

Train Network

Prune Connections

Retrain Weights

Weight
Based
Pruning

