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EFFICIENT CNNS

X-CONV LAYERS & X-NETS

Email: ameya.pandurang.prabhu@gmail.com 
Code: https://github.com/DrImpossible/Deep-Expander-Networks

DNNs have great accuracies but are resource intensive. 
Hence important to study speed/accuracy  tradeoffs. 

CNNs are especially runtime heavy. Essential to make 
CNNs efficient for making them applicable in real-time 
and embedded systems.

A. Canziani, A. Paszke, and E. Culurciello.  An analysis of deep neural network models for practical applications.arXiv preprint arXiv:1605.07678 , 2016.

Compact, fast in train time

Training in one cycle/phase, 
similar to original models.

Bulky full model need not be 
trained.

Task-independent 
architectures. Generalizable.

Advantages
Model CNNs using Graphs.
sparsity = efficiency

Hypothesise that 
expressivity = connectivity

Propose to use expander graphs 
that are simultaneously sparse 
and well connected

Expander Graphs: Graphs such that neighbourhood of 
every subset of vertices expands.

Well studied theory for over 50 years in theoretical 
computer science.

There are sparse graphs with O(n) number of edges 
that has the expander properties.

A random D-regular graph for D>2, is an expander 
with high probability.
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The connections are fixed according to an expander graph 
structure. This is a good prior to form a compact networks before 
training that is efficiently implementable. 

We study X-MobileNet, X-DenseNet, X-ResNet, X-VGG and 
X-AlexNet where the Conv layers are replaced by X-Conv layers. 
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Theorem 1 (Sensitivity of X-Nets): G1 , G2 ,··· , Gt be D-regular 
bipartite expander graphs with n nodes on both sides. Then 
every output neuron is sensitive to every input in a Deep 
X-Net defined by Gi’s with depth t = O(logn).

Theorem 2  (Mixing  in  X-Nets): Let S,T be 
subsets of input and output nodes in the 
X-Net layer defined by G. The number of 
edges between S and T is ≈ D |S||T| / n

#Paths ≈ D |S||T|/n 
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Comparison with Grouped Convolution (G-Conv) with same Sparsity

X-Conv beats G-Conv by 4-5% on MobileNet-0.5 

Compression G-Conv 
Error

x2 42.55%

x4 50.59%

x8 54.87%

x16 60.97%

X-Conv (Ours) 
Error

41.78%

46.00%

50.77%

55.37%
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|T| ≥ (1+ )|S|

Wider and Deeper X-DenseNets

Convert your code to use XConv2d and XLinear layers:

from layers import XLinear, XConv2d

nn.Conv2d(...)             XConv2d(..., expandSize=128)
nn.Linear(...)               XLinear(..., expandSize=256)

PYTORCH IMPLEMENTATION

MAJOR APPROACHES & CHALLENGES

EXPANDER GRAPHS

OUR APPROACH

THEORETICAL PROPERTIES

Wider or Deeper Compressed Networks give better parameter efficiency and accuracy.

 Architecture Design  Architecture Search

Depthwise Seperable, 
Grouped Convolutions

Trained using RL or 
Evolutionary  Strategy.

Training process gets more 
complicated with newer 
hyperparameters.

Ideally should allow training of novel 
architectures themselves.

Challenges
Trial and Error methods will not 
scale to large datasets.

Train Efficient 
Network
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Pruning vs Ours

Train Network

Prune Connections

Retrain Weights

Weight 
Based
Pruning


