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Hardness of Approximate Coloring

Abstract

The graph coloring problem is a notoriously hard problem, for which we do not
have efficient algorithms. A coloring of a graph is an assignment of colors to its vertices
such that the end points of every edge have different colors. A k-coloring is a coloring
that uses at most k distinct colors. The graph coloring problem is to find a coloring that
uses the minimum number of colors. Given a 3-colorable graph, the best known effi-
cient algorithms output an n0.199···-coloring. It is known that efficient algorithms can-
not find a 4-coloring, assuming P ̸=NP (such results are commonly known as hardness
results). Hence there is a large gap (n0.199··· vs 4) between what current algorithms can
achieve and the hardness results known.

In this thesis, we narrow the aforesaid gap for some generalizations of graph coloring,
by giving improved hardness results (for exponentially better parameters in some cases).
Some of our main results are as follows:

1. For the case of almost 3-colorable graphs, we show hardness of finding a 2poly(log logn)-
coloring, assuming a variant of the Unique Games Conjecture (UGC).

2. For the case of 3-colorable 3-uniform hypergraphs, we show quasi-NP-hardness
of finding a 2O(log logn/ log log logn)-coloring.

3. For the case of 4-colorable 4-uniform hypergraphs, we show quasi-NP-hardness
of finding a 2(logn)1/21 -coloring.

4. For the problem of the approximating the covering number of CSPs with non-
odd predicates, we show hardness of approximation to any constant factor, as-
suming a variant of UGC.
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Simple can be harder than complex: You have to work

hard to get your thinking clean to make it simple. But

it’s worth it in the end because once you get there, you

can move mountains.

Steve Jobs
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Introduction

3





1
Puzzles, Algorithms & Hardness

1.1 Coloring Puzzle

Consider the following puzzle. Given a figure as above, the goal is to give colors to

the circles such that for every line, its end points have different colors. Furthermore, the

number of colors used needs to be minimized. Without this condition the problem is

trivial since using a different color for every circle would be a solution irrespective of the

figure.

Puzzles like above are very commonly encountered in a variety of real life instances.

However known algorithms takes far too much time to complete even on instances

with 20 vertices. This thesis is about an explanation for the lack of efficient algorithms,

for coloring like problems.

Figures like above are commonly called graphs (strictly speaking they are undirected

graphs, but in this thesis will only be concerned with undirected graphs) . A graphG =
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Figure 1.1: The figure on the right is a 3-coloring of the graph on the left. However it does not have a 2-coloring.

(V,E) consists of a set of verticॸ V (the circles) and a setE containing some pairs of

vertices, called edgॸ (the lines).

Given a graphG = (V,E) and a numberC , aC-coloring ofG is an assignment

of colors denoted by {1, · · · , C} to the vertices such that the end points of every edge

have different colors. For a given graph, aC-coloring might not exist for all values of

C . But for any graph, the coloring which gives different colors to all vertices in V , is an

n-coloring, where n is the size (the number of vertices in V ) ofG.

Definition 1.1. The Graph-Coloring problem ॹ, given a graph, find a coloring, using

the minimum number of colors. Thॹ minimum value ॹ commonly known ॷ the chro-

matic number of the graph.

1.2 Efficient Algorithms

If the maximum degree ofG is∆ then the following simple algorithm computes a (∆+

1)-coloring in time bounded by the number of edges.

for v ∈ V do
give v a color in {1, · · · ,∆+ 1} different from the colors of its already colored

neighbours.

end
Algorithm 1: For graphs with maximum degree≤ ∆.
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Algorithm 1, does not solve the Graph-Coloring problem since the chromatic

number can be much smaller than∆ + 1. Suppose the graph has a c-coloring there is a

simple algorithm to find it, which takes cn ·m time, wherem is the number of edges.

for every assignment f ∈ {1, · · · , c}V of colors to the verticॸ do

for every edge do
check if f assigns different colors to the end points.

end

end
Algorithm 2: Brute Force Algorithm

However note that the running time of Algorithm 2 grows exponentially in n. Even

for n = 20, the running time (> c20) is prohibitively large, while for Algorithm 1 it is

still a reasonable number. This motivates the definition of efficient algorithms, as ones

that has running time bounded by a polynomial in the input size. For simplicity, we

consider only decision problems (i.e. problems that have a Boolean answer). For such

problems the inputs are partitioned into YES and NO instances. We will often specify a

decision problem by the set of YES instances. Though Graph-Coloring problem is

not a decision problem, we can consider the problem which have the numberC also in

the input, where the goal is to check if the graph has aC-coloring.

Informal Definition 1.2. P ॹ the class of decision problems, that hॷ an algorithm with

running time bounded by a polynomial in n (the input size).

Note that for Graph-Coloring, (G,C) ∈ YES (i.e. G has aC-coloring), then

there is a certificate that certifies that it is YES instance, that can be verified in time pro-

portional to the number of edges. The certificate is simply theC-coloring of the graph.

7



And if (G,C) ∈ NO, then any assignment of colors from {1, · · · , C}, will leave some

edge monochromatic. This property is true for a large class of problems.

Informal Definition 1.3. NP ॹ the class of decision problems, for which there ॹ an algo-

rithm V which takॸ an input x and a proof π, runs in time polynomial in the size of x

and satॹfiॸ the following propertiॸ.

• Completeness : If x ∈ YES then there exists π such that V (x, π) = 1.

• Soundness : If x ∈ NO then for any π, V (x, π) = 0.

For any NP problem, there is a trivial algorithm similar to Algorithm 2, which runs

in time cn for some constant c. The algorithm just tries all possible certificates with the

verification procedure. It is a major open problem if P=NP. A surprising result is that

there are certain class of problems called NP-Complete which capture the hardness of

solving problems in NP. That is, an instance of any NP problem could be converted

efficiently to an instance of such problems. The Graph-Coloring problem is an NP-

Complete problem. Hence unless P = NP, we cannot hope to have polynomial time al-

gorithms for Graph-Coloring. One can ask if there are polynomial time algorithms

for a relaxed version of the problem.

1.3 Approximation Algorithms

A relaxed version of the Graph-Coloring problem is to compute the chromatic

number approximately. An approximation algorithm for chromatic number with ap-

proximation factor F ≥ 1, always outputs a number betweenC andC · F , whereC is

the chromatic number of the input graph.

However for a general graph, this relaxation is also a hard problem. That is, assum-

ing the famous P ̸= NP conjecture, it is known that this problem cannot be solved
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in polynomial time. Feige & Kilian [FK00] showed that computing this number ap-

proximately within a factor of n1−ε for any small constant ε > 0 is known to be hard,

assuming a different complexity conjecture. Therefore, there is not much hope of hav-

ing an efficient algorithm, which does much better than the trivial n-coloring.

Since the general approximation problem is hard, the focus shifted on solving it for

subclasses of graphs. A natural subclass of graphs to consider, are the ones for which the

chromatic number is a small constant c. For c = 2, such graphs are commonly called

bipartite. There is a simple linear time algorithm for finding a 2-coloring in such graphs.

It just assigns a vertex one color, the other color to all its neighbours, and continues

until all vertices are colored. However for 3-colorable graphs, finding a 3-coloring is

NP-Hard (it cannot be solved by efficient algorithms, assuming P ̸=NP).

Hence a long series of works, was aimed at solving this problem approximately.

Definition 1.4. Approximate-Graph-Coloring(c, C) problem ॹ to find a C-

coloring, when the input graph ॹ promised to be c-colorable.

Remark 1.5. We will often be considering the decision version of the problem, specified by

disjoint sets of YES (c-colorable graphs) and NO (graphs with chromatic number > C)

instancॸ. The goal ॹ to have an algorithm to accept all YES instancॸ and reject all NO

instancॸ. The algorithm can either accept or reject inputs which are neither YES nor

NO.

For 3-colorable graphs, Wigderson [Wig83] gave the first not trivial improvement

of finding aO(
√
n)-coloring using combinatorial techniques. This was further im-

proved toO(n3/8)-coloring by Blum [Blu94]. A major breakthrough was made by

Karger, Motwani & Sudan [KMS98], using semi-definite programming (SDP). For a

3-colorable graph with maximum degree d, they gave anO(d1/3)-coloring algorithm.

Combining this with Wigderson’s algorithm, they obtained aO(n1/4)-coloring algo-

rithm. Blum & Karger [BK97] combined the combinatorial methods of Blum [Blu94]
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with the SDP to get anO(n3/14)-coloring. The current best known (see results of

Kawarabayashi & Thorup [KT14]) efficient algorithms output a n0.19996-coloring.

1.4 What this thesis is about?

This thesis is about giving an explanation for the lack of efficient algorithms for some

generalizations of the Approximate-Graph-Coloring(c, C) problem, using the

theory of NP-Completeness and complexity conjectures similar to P ̸=NP. That is,

we prove that efficient algorithms for the problem will imply that the corresponding

conjecture is false. Such results are called hardness results and the area in general, is com-

monly called in literature as the hardness of approximation. The focus of our hardness

results will be the case when c is a small constant andC can be any large constant or a

function that depends on n. As described in the previous section, there are algorithms

which solve these problems forC = nα for some constant α < 1. We prove hardness

results for larger values (exponentially larger in some cases) ofC than was previously

known. We will describe these generalizations in the next three sections.

1.4.1 Almost Coloring

Assuming P ̸=NP, Khanna et al. [KLS00] showed hardness for the Approximate-

Graph-Coloring(3, 4) problem (that is there is no efficient algorithm which can

find a 4-coloring, in any 3-colorable graph). Since then, there has been no progress

in this problem. Later, results where proved using a complexity assumption called

the Unique Games Conjecture (UGC), which is stronger than the P ̸=NP assump-

tion. Starting with the work of Khot [Kho02c], it was shown that UGC, explains the

lack of efficient approximation algorithms for a variety of problems (eg. Vertex Cover,

MAX-CUT). Dinur, Mossel & Regev [DMR09] showed hardness for Approximate-
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Graph-Coloring(3, C) for any constantC using a conjecture similar to UGC. Due

to a technical problem (that UGC does not have perfect completeness), their results

which used UGC exactly, showed hardness for the ε-Almost-Coloring(c, C) prob-

lem, for any small ε > 0.

Definition 1.6. The ε-Almost-Coloring(c, C) problem ॹ of distiguishing graph from

the following casॸ:

• YES : There ॹ a subgraph of size (1− ε)n that ॹ c-colorable.

• NO : Any independent set ॹ the graph hॷ size at most n/C .

Contributions of this Thesis: The work of Dinur & Shinkar [DS10] implies

hardness results for ε-Almost-Coloring(3, poly(log n)), using a stronger form of

UGC (where the dependence between the soundness and alphabet size is inverse poly-

nomial). In Chapter 8, we show hardness for the same problem, using a weaker form of

UGC (in which the aforesaid dependence is super-polynomial) in some respects (joint

work with Dinur, Harsha & Srinivasan [DHSV15]).

The previous reductions (by Dinur, Mossel & Regev [DMR09] and Dinur & Shinkar [DS10])

followed the template of Håstad [Hås01], which employed a particular error correcting

code known as the long code. As the name implies, this code has a large size which made

the reductions inefficient. A shorter code called the low degree long code was proposed

by Barak et al. [BGH+12] . Dinur and Guruswami [DG14] showed improved approx-

imate covering (which we define in Section 1.4.3) hardness results using this shorter

code. In Chapter 8, we adapt this shorter code to the reduction of Dinur, Mossel and

Regev [DMR09] for graph coloring, to get improved results.
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1.4.2 Hypergraph Coloring

Guruswami, Håstad & Sudan [GHS02] initiated the study of hypergraph coloring

problems, to get a better understanding of graph coloring and since it is a natural gen-

eralization. They showed hardness results for c = 2, C = poly(log log n), for hy-

pergraph coloring, assuming that NP does not have quasi-polynomial algorithms (such

results are commonly known as quasi-NP-hardness results). A k-uniform hypergraph

G = (V,E) is similar to a graph, with the edgesE ⊆
(
V
k

)
containing k vertices. A c-

coloring of a hypergraph is coloring of vertices using colors {1, · · · , c}, such that every

edge has 2 vertices with distinct colors. For k = 2, a hypergraph is simply a graph.

Definition 1.7. The Approximate-k-Hypergraph-Coloring(c, C) problem ॹ

defined similar to Approximate-Graph-Coloring(c, C), ॷ given a c-colorable k-

uniform hypergraph, find a C-coloring. The decision version ॹ also defined analogously.

When k > 2, for any constant c > 1, known algorithms only guarantee an nα-

coloring for some α < 1. Starting with the work of Guruswami, Håstad & Sudan

[GHS02], there have been many results in hardness of hypergraph coloring. For the

case of constant c, k, strongest known results due to Khot [Kho02a], who showed

quasi-NP-hardness forC = poly(log n).

Contributions of this Thesis: In Chapter 9, we exponentially improve the

hardness results. In Section 9.1, we first show hardness results (joint work with Gu-

ruswami, Harsha, Håstad & Srinivasan [GHH+14]) for 3-uniform 3-colorable hyper-

graphs by a more efficient reduction, that makes use of low degree long code (which we

describe in Section 7.1). For the case of 4-uniform 4-colorable hypergraphs, our initial

work (joint work with Guruswami, Harsha, Håstad & Srinivasan [GHH+14]) showed

the first super-polylogarithmic coloring hardness (i.e. C >> poly(log n)) results, by

12



using the low degree long code. Subsequent to our initial work Khot & Saket [KS14a]

got hardness results of 2(logn)1/21 , by using the low degree long code with degree 2.

Though their result was for 12-uniform hypergraphs. We further observed [Var15] that

by combining their methods with ours, the same hardness results can be obtained for

4-uniform hypergraphs. Hence we improved the hardness results from poly(log n) to

2(logn)
1/21 for the case of 4-colorable 4-uniform hypergraphs.

1.4.3 Covering CSPs

The covering problem for constraint satisfaction (CSP) is a generalization of the hy-

pergraph coloring problem, introduced by Guruswami, Håstad and Sudan [GHS02]

and later studied in detail by Dinur & Kol [DK13]. An instance of the problem consists

of a hypergraphG = (V,E) along with a predicate P ⊆ {0, 1}k and a literal func-

tion L : E → {0, 1}k. An assignment f : V → {0, 1} covers an edge e ∈ E, if

f |e ⊕ L(e) ∈ P (by f |e, we mean the k bit string, obtained by restricting f to ver-

tices in e, and the⊕ operation is coordinate-wise parity of the two strings). A cover for

a CSP instance is a set of assignments such that every edge is covered by one of the as-

signments. The goal of the covering problem is to find the minimum sized cover.

When the predicate is the 3-OR predicate, we can view the instance as a 3-SAT in-

stance, where each edge is a clause and the literal function specifies which variables are

to be negated. Then the satisfiability problem is equivalent to finding a cover of size 1.

The covering problem can also be thought of as a generalization of the coloring prob-

lem. Consider an instanceGwith the NAE( := {0, 1}k \ {0, 1}) predicate and the

trivial literal function L(e) = 0k for every edge e. It is not difficult to see thatG has

a cover of size t iffG is 2t-colorable. The approximate covering problem is defined as,

given a c-coverable instance, find aC-covering.

Definition 1.8 (Covering-P -CSP(c, C)). For P ⊆ [q]k and c, C ∈ N, the Cover-

13



ing-P -CSP(c, C) problem ॹ, given a c-coverable instance (G = (V,E), L) of P -CSP,

find an C-covering.

A predicate P is odd, if for every x ∈ {0, 1}k either x ∈ P or x ∈ P . For odd

predicates, there is a trivial algorithm with factor 2, since any assignment and its com-

plement covers the CSP instance. Dinur & Kol [DK13] asked the question whether, the

approximate covering problem is hard for any constantC > c, for all non-odd predi-

cates. Assuming a variant of UGC, they proceeded to show that if a non-odd predicate

has a pairwise independent distribution in its support then, this is indeed the case.

Contributions of this Thesis: In Chapter 10, we answer the question of Dinur

& Kol in the affirmative (joint work with Bhangale & Harsha [BHV15]). That is, the

approximate covering problem for a non-odd predicate is hard for any constantC > c

(assuming the same conjecture as Dinur & Kol used). This leads to a complete char-

acterization of predicates for which this result can be true, since there is a trivial 2-

covering algorithm for odd predicates. Our results also holds over non binary alpha-

bets. We also show NP-hardness results, for the approximate covering problem with

parameters c = 2, C = log log n, for a class of predicates. Previously such results were

known due to Dinur & Kol for 4-LIN with c = 2, C = log log log n.

1.5 Organization of Thesis

This thesis has two main parts. In Part II, we will introduce some of the mathemati-

cal techniques used in proving the hardness results. Part III contains all the hardness

results.

In Part II, we also prove some lemmas which form the basis of the results in the next

part. In Chapter 3, Section 3.3 is a contribution of this thesis, were we prove analogues

14



of results in Boolean function analysis to functions on subspaces. In Chapter 4, we

discuss a linear algebraic result about testing low degree polynomials. Section 4.3 is

a contribution of this thesis, though the analysis is similar to the results of Dinur &

Guruswami [DG14] mentioned in Section 4.2. In Chapter 5, we also give some com-

binatorial results about derandomized graph products. Section 5.2 and Section 5.3 are

contributions of this thesis which uses the results proved in Section 4.3.

Part III contains all the hardness results about almost graph coloring (Chapter 8;

joint work with Dinur, Harsha & Srinivasan [DHSV15]), hypergraph coloring (Chap-

ter 9; joint work with Guruswami, Harsha, Håstad & Srinivasan [GHH+14] and the

result [Var15] ), and covering problem (Chapter 10; joint work with Bhangale & Har-

sha [BHV15]). These results are the main contributions of this thesis, though much of

the hardness reductions and analysis are similar to previous works.
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Mathematical Techniques
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2
Analysis of Functions on Product Spaces

In this chapter, we will describe some results concerning functions on product proba-

bility spaces.

2.1 Preliminaries

Let (Ω, µ) be a discrete probability space and (ΩL, µ⊗L) be the corresponding product

space. For a function f : ΩL → R, the Efron-Stein decomposition of f with respect to

the product space is given by

f(x1, · · · , xL) =
∑
β⊆[L]

fβ(x),

where fβ depends only on xi for i ∈ β and

∀β′ ̸⊇ β, a ∈ Ωβ′
, E
x∈µ⊗L

[fβ(x) | xβ′ = a] = 0.

The ℓp and ℓ∞ norms of f with respect to the probability space are defined as

∥f∥p := E
x∈µ⊗L

[f(x)p]1/p , ∥f∥∞ := max
x∈Ω⊗L

|f(x)| .

19



For i ∈ [L], the influence of the ith coordinate on f is defined as follows.

Inf i[f ] := E
x1,··· ,xi−1,xi+1,··· ,xL

Varxi
[f(x1, · · · , xL)] =

∑
β:i∈β

∥fβ∥22.

For an integer d, the degree d influence is defined as

Inf≤d
i [f ] :=

∑
β:i∈β,|β|≤d

∥fβ∥22.

2.2 Invariance Principle

Let (Ωk, µ) be a probability space. Let support(µ) := {x ∈ Ωk | µ(x) > 0}.

Definition 2.1 (Connected Sets and Distributions). We say that S ⊆ Ωk ॹ connected

if for every x, y ∈ S, there ॹ a sequence of strings starting with x and ending with y

such that every element in the sequence ॹ in S and every two adjacent elements differ in

exactly one coordinate. The probability space ॹ connected if support(µ) ॹ connected.

Theorem 2.2 (Mossel [Mos08, Proposition 6.4]). Let (Ωk, µ) be a connected proba-

bility space such the minimum probability of every atom in support(µ) ॹ at least α ∈(
0, 1

2

]
. Then there exists continuoॺ functions Γ : (0, 1) → (0, 1) and Γ : (0, 1) →

(0, 1) such that the following holds: For every ε > 0, there exists τ > 0 and an integer

d such that if a function f : ΩL → [0, 1] satॹfiॸ

∀i ∈ [n], Inf≤d
i (f) ≤ τ

then

Γ

(
E
µ
[f ]

)
− ε ≤ E

(x1,...,xk)∼µ

[
k∏

j=1

f(xj)

]
≤ Γ

(
E
µ
[f ]

)
+ ε.

There exists an absolute constant C such that one can take τ = εC
log(1/α) log(1/ε)

εα2 and
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d = log(1/τ) log(1/α).

Correlation is a measure of dependence in probability spaces where the sample space

is a product set.

Definition 2.3 (Correlated Spaces). Let (Ω1 × Ω2, µ) be a finite probability space, the

correlation between Ω1 and Ω2 with respect to µ ॺ defined ॷ

ρ(Ω1,Ω2;µ) := max
f :Ω1→R,E[f ]=0,E[f2]≤1
g:Ω2→R,E[g]=0,E[g2]≤1

E
(x,y)∼µ

[|f(x)g(y)|].

For a probability space
(∏k

i=1 Ωi, µ
)
, the correlation ॹ given by

ρ

(
k∏

i=1

Ω;µ

)
:= max

i∈[k]
ρ

Ωi,
∏

j∈[k],j ̸=i

Ωi;µ

 .

The following result about correlated spaces is an adaptation of similar results (see

Wenner [Wen13, Theorem 3.12] and Guruswami & Lee [GL15, Lemma A.1]) to proving

our hardness results.

Theorem 2.4. Let (Ωk
1 ×Ωk

2, µ) be a correlated probability space with correlation ρ < 1

such that the marginal of µ on any pair of coordinatॸ one each from Ω1 and Ω2 ॹ a

product distribution. Let µ1, µ2 be the marginals of µ on Ωk
1 and Ωk

2 respectively. Let

X, Y be two random k × L dimensional matricॸ chosen ॷ follows: independently for

every i ∈ [L], the pair of columns (xi, yi) ∈ Ωk
1×Ωk

2 ॹ chosen from µ. Let xi, yi denote

the ith rows of X and Y respectively. If F : ΩL
1 → [−1,+1] and G : ΩL

2 → [−1,+1]

are functions such that

τ :=

√∑
i∈[L]

Infi[F ] · Infi[G] and Γ := max


√∑

i∈[L]

Infi[F ],

√∑
i∈[L]

Infi[G]

 ,
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then∣∣∣∣∣∣ E
(X,Y )∈µ⊗L

∏
i∈[k]

F (xi)G(yi)

− E
X∈µ⊗L

1

∏
i∈[k]

F (xi)

 E
Y ∈µ⊗L

2

∏
i∈[k]

G(yi)

∣∣∣∣∣∣ ≤ 2O(k)Γτ.

(2.2.1)

Proof. We will prove the theorem by using the hybrid argument. For i ∈ [L + 1], let

X(i), Y (i) be distributed according to (µ1 ⊗ µ2)
⊗i ⊗ µ⊗L−i. Thus, (X(0), Y (0)) =

(X, Y ) is distributed according to µ⊗L while (X(L), Y (L)) is distributed according to

(µ1 ⊗ µ2)
⊗L. For i ∈ [L], define

erri :=

∣∣∣∣∣ E
X(i),Y (i)

[
k∏

j=1

F (x
(i)
j )G(y

(i)
j )

]
− E

X(i+1),Y (i+1)

[
k∏

j=1

F (x
(i+1)
j )G(y

(i+1)
j )

]∣∣∣∣∣ .
(2.2.2)

The left hand side of Equation (2.2.1) is upper bounded by
∑

i∈[L] erri. Now for a fixed

i, we will bound erri. We use the Efron-Stein decomposition of F,G to split them into

two parts: the part which depends on the ith input and the part independent of the ith

input.

F = F0 + F1 where F0 :=
∑
α:i/∈α

Fα and F1 :=
∑
α:i∈α

Fα.

G = G0 +G1 whereG0 :=
∑
β:i/∈β

Gβ andG1 :=
∑
β:i∈β

Gβ.

Note that Inf i[F ] = ∥F1∥22 and Inf i[G] = ∥G1∥22. Furthermore, the functions F0

and F1 are bounded since F0(x) = Ex′ [F (x
′
)|x′

[L]\i = x[L]\i] ∈ [−1,+1] and

F1(x) = F (x) − F0(x) ∈ [−2,+2]. For a ∈ {0, 1}k, let Fa(X) :=
∏k

j=1 Faj(xj).

SimilarlyG0, G1 are bounded andGa defined analogously. Substituting these defini-

tions in Equation (2.2.2) and expanding the products gives

erri =

∣∣∣∣∣∣
∑

a,b∈{0,1}k

(
E

X(i),Y (i)

[
Fa(X

(i))Gb(Y
(i))
]
− E

X(i+1),Y (i+1)

[
Fa(X

(i+1))Gb(Y
(i+1))

])∣∣∣∣∣∣ .
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Since both the distributions are identical on (Ωk
1)

⊗L and (Ωk
2)

⊗L, all terms with a = 0̄

or b = 0̄ are zero. Because µ is uniform on any pair of coordinates on each from the

Ω1 andΩ2 sides, terms with |a| = |b| = 1 also evaluates to zero. Now consider the

remaining terms with |a|, |b| ≥ 1, |a| + |b| > 2. Consider one such term where

a1, a2 = 1 and b1 = 1. In this case, by Cauchy-Schwarz inequality we have that

∣∣∣∣ E
X(i−1),Y (i−1)

[
Fa(X

(i−1))Gb(Y
(i−1))

]∣∣∣∣ ≤√EF1(x1)2G1(y1)2

· ∥F1∥2 ·

∥∥∥∥∥∏
j>2

Faj

∥∥∥∥∥
∞

·

∥∥∥∥∥∏
j>1

Gbj

∥∥∥∥∥
∞

.

From the facts that the marginal of µ to any pair of coordinates one each fromΩ1 and

Ω2 sides are uniform, Inf i[F ] = ∥F1∥22 and |F0(x)|, |F1(x)|, |G0(x)|, |G1(x)| are all

bounded by 2, the right side of above becomes

√
EF1(x1)2

√
EG1(y1)2 · ∥F1∥2 ·

∥∥∥∥∥∏
j>2

Faj

∥∥∥∥∥
∞

·

∥∥∥∥∥∏
j>1

Gbj

∥∥∥∥∥
∞

≤
√

Inf i[F ]2Inf i[G] · 22k.

All the other terms corresponding to other (a, b)which are at most 22k in number, are

bounded analogously. Hence,

∑
i∈[L]

erri ≤ 24k
∑
i∈[L]

(√
Inf i[F ]2Inf i[G] +

√
Inf i[F ]Inf i[G]2

)
= 24k

∑
i∈[L]

√
Inf i[F ]Inf i[G]

(√
Inf i[F ] +

√
Inf i[G]

)
.

By applying the Cauchy-Schwarz inequality, followed by a triangle inequality, we obtain

∑
i∈[L]

erri ≤ 24k
√∑

i∈[L]

Inf i[F ]Inf i[G]

√∑
i∈[L]

Inf i[F ] +

√∑
i∈[L]

Inf i[G]

 .

Thus, proved.
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3
Harmonic Analysis of Functions

In this chapter, we describe some tools for analyzing functions over probability spaces,

for which the sample space exhibits a field structure, and the distribution is defined in

terms of the field operations. In this case, we can obtain decompositions with special

properties, that helps in analysing such distributions. We will be concerned with the

sample space which is the vector space of functions of the form f : FR
p → Fp (p is a

prime). We extend these decompositions and the associated results to the case when the

domain is the subspace of low degree polynomials over Fp. We prove an analogue of

hypercontractivity for functions over this subspace (Lemma 3.18), by reducing it to the

result on the full space (Lemma 3.22). This enables us to prove an analogue of a result

by Alon et al. [ADFS04] (Lemma 3.6), to functions on the subspace (Lemma 3.19).

We use these results later in Chapter 5, for proving some derandomized graph product

results.

3.1 Harmonic Analysis for Fields

Consider the probability space (Fp, µ)where µ is the uniform probability measure over

Fp. We will be working with functions of the formA : FR
p → C. Note that all such

functions form a vector space overCwith dimension pR. Characters are a natural or-

thogonal basis for this vector space.
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Definition 3.1 (Character). A character of FR
p ॹ a function χ : FR

p → C such that

χ(0) = 1 and ∀f, g ∈ FR
p , χ(f + g) = χ(f)χ(g).

The following lists the basic properties of characters, which can be verified easily.

Observation 3.2. Let {1, ω, · · · , ωp−1} be the pth roots of unity and for β, f ∈ FR
p ,

χβ(f) := ωβ·f where β · f :=
R∑
i=1

βifi mod p.

• The characters of FR
p are {χβ : β ∈ FR

p }.

• Characters forms an orthonormal basॹ for the vector space of functions from FR
p to

C, under the inner product

⟨A,B⟩ := E
f∈FR

p

[
A(f)B(f)

]
.

• Any function A : FR
p → C can be uniquely decomposed ॷ

A(f) =
∑
β∈FR

p

Â(β)χβ(f) where Â(β) := E
g∈FR

p

[
A(g)χβ(g)

]
.

• For any function A : FR
p → C,

∑
β∈FR

p

|Â(β)|2 = E
f∈FR

p

[
|A(f)|2

]
. (3.1.1)

• For any function A : FR
p → {1, ω, · · · , ωp−1},

∑
β∈FR

p

|Â(β)|2 = 1. (3.1.2)
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Remark 3.3. Note that when p = 2, the roots of unity are {−1,+1}. Then the charac-

ters are real valued functions. It ॹ easy to see that they form a orthonormal basॹ for the

real vector space of functions of the form A : FR
2 → R. Hence all the above propertiॸ

hold with respect to thॹ vector space ॷ well.

Definition 3.4 (Generalized Dictator). A generalized dictator function A : FR
p → C

ॹ one that depends only on a single coordinate. That ॹ, ∃i ∈ [R] such that for any

β ∈ FR
p , if it hॷ a non-zero entry in some coordinate j ̸= i then Â(β) = 0.

Definition 3.5 (Fourier degree). The Fourier degree of a function A : FR
p → C ॹ the

smallest number d such that A can be written ॷ

A =
∑

β:|β|≤d

Â(β)χβ

where |β| ॹ number of coordinatॸ i where βi ̸= 0.

An interesting fact about functions of the formA : FR
2 → {0, 1} is that, ifA has

Fourier degree 1 thenA is a generalized dictator function. The following theorem over

Fp, says that if the sum of squares of absolute values of Fourier coefficients ofAwith

|β| > 1 is small, then it is close to a generalized dictator function. It is a generalization

of the well known FKN Theorem (see [FKN02]), which gives the result for p = 2.

Lemma 3.6 (Alon et al. [ADFS04]). For every prime p, there ॹ constant K (that de-

pends on p) such that the following holds: If A : FR
p → {0, 1} satॹfiॸ

∑
|α|>1

|Â(α)|2 ≤ ε and Â(0) = δ

then there exists a generalized dictator B : FR
p → {0, 1} such that

∥A−B∥2 ≤
Kε

δ − δ2 − ε
.
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The above lemma is proved using the following hypercontractive inequality.

Lemma 3.7 (Hypercontractivity). For every prime p, there ॹ a constant C (that depends

on p) such that for any function A : FR
p → C with Â(α) = 0 when |α| > t,

∥A∥4 ≤ Ct∥A∥2.

In the next section we will prove derandomized versions of the above lemmas.

3.2 Polynomial Subspaces

Let Pr,d be the set of degree d polynomials on r variables over Fp, with individual de-

grees< p (the prime pwill be clear from the context). Let Fr := Pr,(p−1)r. Note that

Fr is the set of all functions from Fr
p to Fp. Fr is a Fp-vector space of dimension pr and

Pr,d is its subspace of dimension rO(d). TheHamming distance between f and g ∈ Fr,

denoted by∆(f, g), is the number of inputs on which f and g differ. When S ⊆ Fr,

∆(f, S) := ming∈S ∆(f, g). We say f is∆-far from S if∆(f, S) ≥ ∆ and f is∆-

close to S otherwise. For a polynomial α ∈ Pr,d, the support size of the polynomial is

|α| := |{x : α(x) ̸= 0}|. Given f, g,∈ Fr, the dot product between them is defined as

f · g :=
∑
x∈Fr

p

f(x)g(x) mod p.

For a subspace S ⊆ Fr, the dual subspace is defined as

S⊥ := {g ∈ Fr : ∀f ∈ S, g · f = 0}.

The following theorem relating dual spaces is well known.

Lemma 3.8. P⊥
r,d = Pr,(p−1)r−d−1
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Proof. First note that the dimensions of the two subspaces are equal by a counting ar-

gument. Next we show that P⊥
r,d ⊇ Pr,(p−1)r−d−1. We just need to show that for any

monomial of degree (p−1)r−d−1with individual degrees< p, the dot product with

any monomial of degree dwith individual degrees< p is 0. The product of any such

pair of monomials is a monomial with total degree at most (p− 1)r − 1, and hence has

a variable with degree< p − 1. Without loss of generality, let this variable be x1 with

degree t < p − 1. Notice that
∑

x1∈Fp
xt
1 = 0 mod p and hence the dot product is

0.

We need the following Schwartz-Zippel-like Lemma for degree d polynomials.

Lemma 3.9 (Schwartz-Zippel lemma [HSS13, Lemma 3.2]). Let f ∈ Fp[x1, · · · , xr] be

a non-zero polynomial of degree at most d with individual degreॸ at most p − 1. Then

the support size (|f | := |{x : f(x) ̸= 0}|) satॹfiॸ

|f | ≥ pr−d/(p−1).

The following lemma is an easy consequence of Lemma 3.9.

Lemma 3.10. Let g be a uniformly random polynomial from Pr,d. Then its truth table

ॷ a random string of length pr over the alphabet Fp, ॹ p⌊(d+1)/(p−1)⌋ − 1-wise indepen-

dent.

Proof. From Lemma 3.9 and Lemma 3.8, we know that any non-zero polynomial in

P⊥
r,d = Pr,(p−1)r−d−1 has support size at least p⌊(d+1)/(p−1)⌋. Suppose there is a subset S

of size p⌊(d+1)/(p−1)⌋−1, where g is not uniform. Let V ⊆ F|S|
p be the set of restrictions

of truth tables of polynomials in Pr,d to S. Note that V is a subspace. Since the truth

table of g restricted to S is not uniformly distributed, the dimension of V is< |S|.

Then V ⊥ ⊆ F|S|
p is non-empty. Consider a non-zero v ∈ V ⊥. Then the function
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f which is zero outside S and f|S = v corresponds to a non-zero polynomial which

belongs to P⊥
r,d = Pr,(p−1)r−d−1 with support< p⌊(d+1)/(p−1)⌋ which is a contradiction.

The following lemma is an easy consequence of Lemma 3.10

Lemma 3.11. Let d > 1, X be a set of pd− 1 points in Fr
p and f : X → Fp an arbitrary

function. Then there exists a polynomial q of degree at most (p − 1)d such that q agreॸ

with f on all points in X .

Proof. By Lemma 3.10, the truth table of a random polynomial g of degree (p − 1)d is

pd − 1-wise independent. Hence g|X = f with non-zero probability.

3.3 Harmonic Analysis for Polynomial Subspaces

We define a orthonormal basis set of characters for the vector space of functions of the

formA : Pr,d → C.

Definition 3.12 (Character). A character of Pr,d ॹ a function χ : Pr,d → C such that

χ(0) = 1 and ∀f, g ∈ Pr,d, χ(f + g) = χ(f)χ(g).

The following lists the basic properties of characters (similar to Observation 3.2).

Observation 3.13 ([DG14, Section II C]). Let {1, ω, · · · , ωp−1} be the pth roots of unity

and for β ∈ Fr, f ∈ Pr,d,

χβ(f) := ωβ·f where β · f :=
∑
x∈Fr

p

β(x)f(x) mod p.

• The characters of Pr,d are {χβ : β ∈ Fr}.
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• For any β, β′ ∈ Fr, χβ = χ′
β if and only if β − β′ ∈ P⊥

r,d.

• For β ∈ P⊥
r,d, χβ ॹ the constant 1 function.

• ∀β,∃β′ such that β − β′ ∈ P⊥
r,d and |β′| = ∆(β,P⊥

r,d) (i.e., the constant 0

function ॹ (one of) the closest function to β′ in P⊥
r,d). We call such a β′ a minimum

support function for the coset β + P⊥
r,d.

• Characters forms an orthonormal basॹ for the vector space of functions from Pr,d

to C, under the inner product

⟨A,B⟩ := E
f∈Pr,d

[
A(f)B(f)

]
.

• Any function A : Pr,d → C can be uniquely decomposed ॷ

A(f) =
∑

β∈Λr,d

Â(β)χβ(f) where Â(β) := E
g∈Pr,d

[
A(g)χβ(g)

]

and Λr,d ॹ the set of minimum support functions, one for each of the cosets in

Fr/P
⊥
r,d, with tiॸ broken arbitrarily.

• For any function A : Pr,d → C,

∑
β∈Λr,d

∣∣∣Â(β)∣∣∣2 = E
f∈Pr,d

[
|A(f)|2

]
.

• For any function A : Pr,d → {1, ω, · · · , ωp−1},

∑
β∈Λr,d

|Â(β)|2 = 1.

The following lemma relates characters over different domains related by co-ordinate

projections.
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Lemma 3.14. Letm ≤ r and π : Fr
p → Fm

p be a (co-ordinate) projection i.e., there exist

indicॸ 1 ≤ i1 < · · · < im ≤ r such that π(x1, . . . , xr) = (xi1 , · · · , xim). Then for

f ∈ Pm,d, β ∈ Pr,d,

χβ(f ◦ π) = χπp(β)(f),

where πp(β)(y) :=
∑

x∈π−1(y) β(x).

Proof. Without loss of generality, let {i1, · · · , im} = {1, · · · ,m}. Then

χβ(f ◦ π) = ω
∑

x∈Frp
f◦π(x)·β(x)

= ω
∑

(x1,··· ,xm)∈Fmp
f(x1,··· ,xm)·(

∑
(xm+1,··· ,xn) β(x))

= χπp(β)(f)

Influence and generalized dictators can be defined for functions on polynomial sub-

spaces similar to the product setting.

Definition 3.15 (Influence). For a function A : Pr,d → C and a number k <

p⌊(d+1)/(p−1)⌋/2, the degree k influence of a ∈ Fr
p ॹ defined ॷ

Inf≤k
a (A) =

∑
β∈Λr,d:β(a) ̸=0 and |β|≤k

|Â(β)|2.

Definition 3.16 (Generalized Dictator). A function A : Pr,d → C ॹ a generalized

dictator if there exists x ∈ Fr
p and Â0, Â1, · · · , Âp−1 ∈ C such that A can be written

ॷ A = Â0 +
∑p−1

i=1 Âiχiex where ex : Fr
p → Fp the indicator function for x.

Lemma 3.17. Let A : Pr,d → {0, 1} be such that all non-zero Fourier coefficients have

support size ≤ 1. Then A ॹ a generalized dicator.
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Proof. The proof is similar to the proof of [ADFS04, Lemma 2.3]. Consider the func-

tion (A(f))2. SinceA is {0, 1} valued (A(f))2 = A(f). Equation the Fourier coeffi-

cients on both sides will give that there is an x ∈ Fr
p such thatA(f) only depends on

f(x).

We prove an analogue of Theorem 3.7, to functions over polynomial subspaces.

Lemma 3.18. For every prime p, there ॹ a constant C such that for 4t ≤ pd−1 and any

function A : Pr,(p−1)d → C with Âα = 0 when |α| > t,

∥A∥4 ≤ Ct∥A∥2.

Proof. Follows from Lemma 3.22 and Lemma 3.7.

We prove an analogue of Theorem 3.6, to functions over polynomial subspaces.

Lemma 3.19. For every prime p, there ॹ a constant K such that the following holds: If

A : Pr,(p−1)d → {0, 1} satॹfiॸ

∑
|α|>1

|Â(α)|2 ≤ ε and Â(0) = δ

then there exists a generalized dictator B : Pr,(p−1)d → {0, 1} such that

∥A−B∥22 ≤
Kε

δ − δ2 − ε
.

Proof. The proof of the lemma is similar to the proof of [ADFS04, Lemma 2.4]. Let

K = 2 + 32C8 whereC is the constant from Lemma 3.18. First if ε ≥ 1
32C8 , then the

lemma is true. This is because, for anyB : Pr,(p−1)d → {0, 1},A − B is a {−1, 0, 1}

valued function and ∥A−B∥22 ≤ 1.
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Now assume ε < 1
32C8 . Let

AS =
∑
|α|≤1

Â(α)χα andAL =
∑
|α|>1

Â(α)χα.

(S, L stands for small and large). IfAS were Boolean, it has to be a dictator by Lemma 3.17.

Then the lemma follows by takingB = AS . Consider the following function which

measures the farness ofAS from being Boolean (it is identically 0, for Boolean func-

tions)

H := A2
S − AS.

SinceAS does not have any Fourier coeffcients with support> 1,H will have only

Fourier coefficients with |α to be 0, 1 and 2. Let ex be the function with ex(x) = 1 and

0 otherwise. Then for a, b ∈ Fp, x, y ∈ Fr
p

Ĥ(aex + bey) = 2Â(aex)Â(bey).

The following claim says that the norm ofH is small.

Claim 3.20.

∥H∥2 ≤ 32C8ε.

The claim is proved later. Let ax :=
∑

i∈Fp
|Â(iex)|. Note that

∑
x,y∈Fr

p,x ̸=y

axay ≤
∥H∥2

4
≤ 8C8. (3.3.1)

Also from assumptions in the claim,

∑
x∈Fr

p

ax = δ − δ2 − ε. (3.3.2)
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Let y be such that ay is maximal. Then

(
∑
x

ax)
2 ≤

∑
x

a2x + 16C8 ≤ ay
∑
x

ax + 16C8.

This gives that ay ≥ δ − δ2 − ε(1 + 16C8/(δ − δ2 − ε)). IfB′ := Â(0) +∑
i∈Fp

Â(iey)χiey , then we have that ∥A− B′∥22 ≤ ε(1 + 16C8/(δ − δ2 − ε)).Now

roundingB to the closest [0, 1] valued functionB′ pointwise, we get that

∥A−B∥22 ≤ 2∥A−B′∥22 ≤
Kε

δ − δ2 − ε
.

Proof of Claim 3.20 . First notice,

H = A2
S − AS = (A− AL)

2 − (A− AL) = A2
L + AL(1− 2A).

Let k = 2C4 andZ = {f : |AL(f) ≤ k
√
ε}. Since ∥AL∥22 ≤ ε, by a Markov

argument, Prf [Z] ≥ 1 − 1/k2. Also for every f ∈ Z , |H(f)| ≤ 2|AL(f)| ≤ 2k
√
ε.

SinceH has only Fourier coefficients with support size 0, 1, 2, we can use Lemma 3.18

with t = 2. The claim follows from the following

∥H∥22 = E
f
|H(f)|2 = Pr[Z] E

f∈Z
|H(f)|2 + (1− Pr[Z]) E

f /∈Z
|H(f)|2

≤ 4k2ε+
1

k2

√
E

f /∈Z
|H(f)|4

≤ 4k2ε+
1

k

√
E
f
|H(f)|4

≤ 4k2ε+
1

k
C4∥H∥22 ≤ 32C8ε
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Definition 3.21 (Lift). For a function B : Pr,d → C with the Fourier decomposition

B =
∑

α∈Λr,d
B̂(α)χα, the lift of B denoted by B′ ॹ a function B′ : Fr → C with

the Fourier decomposition B′ =
∑

α∈Λr,d
B̂(α)χα. In the decomposition of B′, χα’s are

functions with domain Fr.

Lemma 3.22. If 2kt ≤ pd−1 and B : Pr,(p−1)d → C be a function such that B̂(α) = 0

when |α| > t then

∥B∥2k = ∥B′∥2k.

Proof. From the Lemma 3.9 and Lemma 3.8, we have that ∀α ∈ P⊥
r,(p−1)d \ {0}, |α| >

pd−1. So if ∃{αi, βi}i∈[k] with |αi|, |βi| ≤ t, then

∑
i∈[k]

αi − βi ∈ P⊥
r,(p−1)d ⇒

∑
i∈[k]

αi − βi = 0. (3.3.3)

This is because
∑

i∈[t] αi − βi has support size at most 2kt < pd−1. We use this fact to

prove the theorem as follows:

∥B∥2k2k = E
f∈Pr,(p−1)d

|B(f)|2k = E
f∈Pr,(p−1)d

∏
i∈[k]

B(f)B(f)

=
∑

α1,β1,··· ,αk,βk∈Λr,(p−1)d

∏
i∈[k]

B̂αi
B̂βi

 E
f∈Pr,(p−1)d

∏
i∈[k]

χαi
(f)χβi

(f)

=
∑

α1,β1,··· ,αk,βk∈Λr,(p−1)d∑
i αi−βi∈P⊥

r,(p−1)d

∏
i∈[k]

B̂αi
B̂βi

=
∑

α1,β1,··· ,αk,βk∈Λr,(p−1)d∑
i αi−βi=0

∏
i∈[k]

B̂αi
B̂βi

( from (3.3.3) )

=
∑

α1,β1,··· ,αk,βk∈Λr,(p−1)d

∏
i∈[k]

B̂αi
B̂βi

 E
f∈Fr

∏
i∈[k]

χαi
(f)χβi

(f)

= E
f∈Fr

∏
i∈[k]

B′(f)B′(f) = E
f∈Fr

|B′(f)|2k = ∥B′∥2k2k

36



3.3.1 Folding over Subspace

Definition 3.23 (Folded function over a subspace). For any set S, a function A : Pr,(p−1)d →

S ॹ said to be folded over a subspace J ⊆ Pr,(p−1)d if A ॹ constant over cosets of J in

Pr,(p−1)d.

Fact 1. Given a function A : Pr,(p−1)d/J → S there ॹ a unique function A′ :

Pr,(p−1)d → S that ॹ folded over J such that for g ∈ Pr,(p−1)d, A
′(g) = A(g + J).

Given q1, · · · , qk ∈ Pr,3(p−1), let

J(q1, . . . , qk) :=

{∑
i

riqi : ri ∈ Pr,(p−1)(d−3)

}
.

The following lemma shows that if a function is folded over J = J(q1, . . . , qk), then

it cannot have weight on small support characters that are non-zero on J (this is a gen-

eralization of the corresponding lemma by Dinur & Guruswami [DG14] to arbitrary

fields).

Lemma 3.24. Let β ∈ Fr ॹ such that | support(β)| < pd−3, and there exists x ∈

support(β) with qi(x) ̸= 0 for some i. Then if A : Pr,d → C ॹ folded over J =

J(q1, . . . , qk), then Â(β) = 0.

Proof. Construct a polynomial twhich is zero at all points in support of β except at x.

From Lemma 3.11, its possible to construct such a polynomial of degree at most (p −
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1)(d− 3). Then we have that tqi ∈ J and ⟨β, tqi⟩ ̸= 0. Now

E
h
[A(h)χβ(h)] =

1

p
E
h
[A(h)χβ(h) + A(h+ tqi)χβ(h+ tqi) + · · ·

+ A(h+ (p− 1)tqi)χβ(h+ (p− 1)tqi)]

=
1

p
E
h
[A(h)χβ(h) + A(h)χβ(h+ tqi) + · · ·

+ A(h)χβ(h+ (p− 1)tqi)]

=
1

p
E
h
[A(h)χβ(h)(1 + χβ(tqi) + · · ·+ χβ((p− 1)tqi))]

=
1

p
E
h
[A(h)χβ(h)(1 + ωt(β·qi) + · · ·+ ω(p−1)t(β·qi))] = 0

The last step is due to the fact that the sum (1+ω+· · ·+ωp−1) = 0. Since t(β ·qi) ̸= 0,

the previous equation contains this sum.
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4
Testing of Low Degree Polynomials

In this chapter, we will describe some results about testing of low degree polynomi-

als. These developments form the technical basis of our improvement to the hardness

of coloring problems. The result in Section 4.1 is due to Haramaty et al. [HSS13] and

Section 4.2 due to Dinur & Guruswami [DG14]. Section 4.3 is a contribution of this

thesis and forms the basis for the combinatorial results in Chapter 5. It was first proved

for showing the hardness of finding independent sets in 3-uniform 3-colorable hyper-

graphs (see Section 9.1).

We will be working with the field Fp with p being 2 or 3. Recall that Pr,d is the set

of degree d polynomials on r variables with individual degrees≤ p − 1. A test for

Pr,d is an algorithm which has oracle access to the truth table of an input polynomial

f : Fr
p → Fp and satisfies the following properties:

• Completeness : If f ∈ Pr,d then the algorithm accepts with probability 1.

• Soundness : For f /∈ Pr,d with∆ being the distance of f from Pr,d,

Pr[Test accepts] ≤ 1− Ω

(
∆

pr

)
.

Remark 4.1. In common literature, testing also requirॸ that the number of queriॸ to be

bounded. However for our purposॸ of designing hardness of approximation reductions,
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thॹ ॹ not a restriction.

4.1 Affine Subspace Test

In this section, we will be working over the field F3. Haramaty et al. [HSS13] analyzes

the following test for checking whether a polynomial is of degree≤ 2r − 2d − 1. We

take degree to be 2r − 2d− 1, as it is convenient later in Chapter 5 and Chapter 8, were

we use it.

Affine Subspace Test(f):

• Choose a random affine subspace S of dimension r − d.

• Check if the input f is of degree 2r − 2d− 1 on S.

The test clearly satisfies completeness, since if the input f is of degree≤ 2r− 2d− 1,

then its degree remains≤ 2r − 2d − 1 on any subspace. Note that f |S is of degree

≤ 2r − 2d− 1 iff ∑
x∈Fr

3

1[x ∈ S]f(x) =
∑
x∈S

f(x) = 0.

Since S is of dimension r − d, there exists linearly independent ℓ1, · · · ℓd ∈ Pr,1 such

that 1[x ∈ S] = 2d ×
∏d

i=1(ℓi − 1)(ℓi − 2). Haramaty et al. [HSS13] proved the

following lemma.

Lemma 4.2 (Haramaty et al. [HSS13, Theorem 1.3]). There exists constants C1, C2 such

that for any α ∈ Fr,

Pr[Test accepts] = Pr
ℓi

[
⟨α,

d∏
i=1

(ℓi − 1)(ℓi − 2)⟩ = 0

]
≤ max

{
1− C1∆(α,Pr,2r−2d−1)

3d
, C2

}

where ℓ1, · · · , ℓi ∈ Pr,1 are random linearly independent polynomials.
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4.2 Product Test

In this section we will be working over the field F2. Dinur & Guruswami [DG14] con-

sidered the following test for checking whether f ∈ Pr,r−d−1.

Product Test(f):

• Choose a random g ∈ Pr,d/4, h ∈ Pr,3d/4.

• Accept iff ⟨g × h, f⟩ =
∑

x∈Fr
2
g(x) · h(x) · f(x) = 0.

If f ∈ Pr,r−d−1 then g × h × f ∈ Pr,r−1 and hence
∑

x∈Fr
2
(g × h × f)(x) = 0.

For analyzing the soundness, we consider two cases. Suppose the distance of f from

Pr,r−d−1 denoted by∆ is< 2d/2. We can assume without loss of generality that f =

f ′ + α where f ′ ∈ Pr,r−d−1 and α has support size∆. Note that the acceptance prob-

ability for f and α is the same. Since a uniformly random g ∈ Pr,d/2 is 2d/2-wise inde-

pendent as a string in 2r, ⟨g × h, α⟩ is a uniformly random bit. Note that if pacc is the

acceptance probability of the test, then Eχγ(g × h) = 2pacc − 1. Hence pacc = 1/2.

For the case when∆ ≥ 2d/2, Dinur & Guruswami proved the following theorem,

which implies that pacc ≤ 1/2 + 2−4·2d/4 .

Theorem 4.3 (Dinur & Guruswami, [DG14, Theorem 1]). If γ ∈ Fr hॷ distance from

P⊥
r,d = Pr,r−d−1 at least 2d/2, then

E
g∈Pr,d/4

[∣∣∣∣ E
h∈Pr,3d/4

[χγ(g × h)]

∣∣∣∣] ≤ 2−4·2d/4 .
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4.3 Square Test

In this section, we consider the following test for degree 2r − 2d − 1 polynomials over

F3.

Square Test(f):

• Choose a random g ∈ Pr,d.

• Accept iff ⟨g2, f⟩ =
∑

x∈Fr
2
(g × g × f)(x) = 0.

As seen in the previous tests, the completeness condition is clearly satisfied. For the

soundness, we analyze the quantity

⟨β, g2⟩,

where g ∈ Pr,d is chosen uniformly at random and β : Fr
3 → F3 is a fixed function

having distance exactly∆ from Pr,2r−2d−1. Similar to the previous section, it is easy

to see that, if the distribution of above is ε-close to uniform distribution on F3, then

pacc ≤ 1/3 + ε.

For a ∈ {0, 1, 2}r, let |a| :=
∑

i ai and x
a denote the monomial

∏
i x

ai
i . In this

notation, g(x) =
∑

|a|≤d gax
a where ga ∈ F3 are chosen independently and uniformly

at random. For x ∈ Fr
3, let ex be the column vector of evaluation of all degree dmono-

mials at x, i.e., ex := (xa)|a|≤d. Then g(x) = gT ex where g is now thought of as the

column vector (ga)|a|≤d and hence, g2(x) = (gT ex)
2 = gT (exe

T
x )g.

⟨β, g2⟩ =
∑
x

β(x)
(
gT exe

T
x g
)
= gT

(∑
x

β(x)exe
T
x

)
g.
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We are thus, interested in the quadratic form represented by the matrixQβ :=
∑

x β(x)e
T
x ex.

Observe that all β belonging to the same coset in Pr,2r/Pr,2r−2d−1 have the same value

for ⟨β, g2⟩ and the matrixQβ . Hence, by Lemma 3.2, we might without loss of gen-

erality, assume that β satisfies support(β) = ∆. The following lemma (an easy con-

sequence of Theorem 6.21 in book by Rudolf & Niederreiter [LN97]), shows that it

suffices to understand the rank ofQβ .

Lemma 4.4. Let A be a n × n, symmetric matrix with entriॸ from F3. The statistical

distance of the random variable pTAp from uniform ॹ exp(−Ω(rank(A))).

In the next sequence of lemmas, we relate rank(Qβ) to∆. In particular, we show

that rank(Qβ) is equal to∆ if∆ ≤ 3d/2 and is exponential in d otherwise. Recall that

over F3, Pr,2r is the set of all function from Fr
3 to F3 and (Pr,2d)

⊥ = Pr,2r−2d−1.

Lemma 4.5. rank(Qβ) ≤ ∆.

Proof. By assumption, β satisfies∆ = support(β). The lemma follows from that fact

that exeTx are rank one matrices andQβ =
∑

x β(x)exe
T
x .

Lemma 4.6. If ∆ < 3d/2, then rank(Qβ) = ∆.

Proof. By assumption, β satisfies∆ = support(β) andQβ =
∑

x β(x)exe
T
x . Since

P⊥
r,d = Pr, 2r − d− 1 and any non-zero polynomial with degree≤ 2r − d − 1 has

support at least 3d/2 (Lemma 3.9), any ⌈3d/2⌉−1 vectors ex are linearly independent. In

particular, the∆ vectors ex for x in support(β) are linearly independent. Consider any

non-zero v in the kernel of the matrixQβ . The linear independence of ex’s gives that

eTx v = 0 for all x ∈ support(β). Hence, the kernel ofQβ resides in a∆-codimensional

space which implies that rank(Qβ) = ∆.

We conjecture that Lemma 4.6 holds for larger values of∆, but for our purposes we

only need a lower bound on the rank when∆ ≥ 3d/2.
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Lemma 4.7. There exists a constant d0 such that if d > d0 and ∆ > 3d/2 then

rank(Qβ) ≥ 3d/9.

Proof. The proof of this theorem is similar to the proofs by Dinur & Guruswami

[DG14, Theorems 15,17] for the F2 case and we follow it step by step. Define

Br
d,k(β) := {q ∈ Pr,k : qβ ∈ Pr,2r−2d−1+k} .

Claim 4.8. kernel(Qβ) = Br
d,d(β).

Proof. The matrixQβ satisfies thatQβ(a, b) = ⟨β, xaxb⟩, for all a, b ∈ {0, 1, 2}r, |a|, |b| ≤

d. Using this description ofQβ , we obtain the following description of ker(Qβ).

(ha)|a|≤d ∈ kernel(Qβ) ⇐⇒ ∀a : |a| ≤ d,
∑

b:|b|≤d

⟨
β, xaxb

⟩
hb = 0

⇐⇒ ∀a : |a| ≤ d,

⟨
β, xa

∑
b:|b|≤d

hbx
b

⟩
= 0

⇐⇒ ∀a : |a| ≤ d, ⟨βxa, h⟩ = 0

⇐⇒ ∀q ∈ Pr,d, ⟨βq, h⟩ = 0

⇐⇒ ∀q ∈ Pr,d, ⟨βh, q⟩ = 0

⇐⇒ βh ∈ Pr,2r−d−1

Thus to prove Lemma 4.7, it suffices to show that rank(Qβ) = dim(Pr
d/B

r
d,d(β)) ≥

3d/9.Towards this end, we define

Φd,k(D) := min
r>d/2,β∈Pr,2r:∆(β,Pr,2r−2d−1)>D

dim(Pr,k/B
r
d,k(β)). (4.3.1)

In terms ofΦd,k, Lemma 4.7 now reduces to showing thatΦd,d(3
d/2) ≥ 3d/9. We

obtain this lower bound by recursively bounding this quantity. The following serves as
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the base case of the recursion.

Claim 4.9. For k > 2d , ∀D, Φd,k(D) = 0 and for k ≤ 2d, Φd,k(1) ≥ 1.

Proof. Let β be the polynomial which attains the minimum in (4.3.1). The first part of

the claim follows from the fact that if k > 2d thenBr
d,k(β) = Pr,k.

Now for the second part. Since β /∈ Pr,2r−2d−1, there is a monomial xa with |a| ≤

2d such that

⟨β, xa⟩ ̸= 0 ⇐⇒ ⟨βxa, 1⟩ ̸= 0 ⇐⇒ βxa /∈ Pr,2r−1.

If |a| ≤ k, xa /∈ Br
d,k(β) and we are done. Otherwise, consider b such that b ≤ a

coordinate-wise and |b| = k. Suppose xbβ ∈ Pr,2r−2d−1+k then xaβ ∈ Pr,2r−1

which is a contradiction. Hence, xbβ /∈ Pr,2r−2d−1+k and the second part of the claim

follows.

For the induction step, we need the following result from Haramaty, Shpilka & Su-

dan [HSS13].

Claim 4.10 (Haramaty, Shpilka & Sudan [HSS13, Theorems 4.16, 1.7]). There exists a

constant d0 such that if 35 < ∆ < 3d, d > d0 where β ॹ ∆-far from Pr,2r−2d−1, then

there exists nonzero ℓ ∈ Pr,1 such that ∀c ∈ F3, β|ℓ=c are ∆/27 far from the restriction

of Pr,2r−2d−1 to affine hyperplanॸ.

Claim 4.11. If 35 ≤ D ≤ 3d and d > d0, then

Φd,k(D) ≥ Φd−1,k(D/27) + Φd−1,k−1(D/27) + Φd−1,k−2(D/27).

Proof. From Lemma 4.10, we get that there exists non-zero ℓ ∈ Pr,1 such that for all

c ∈ F3, β|ℓ=c is∆/27 far from Pr−1,2r−2d−1. By applying a change of basis, we can

assume that ℓ = xr.
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Let β = (x2
r−1)γ+xrη+θ and q = (x2

r−1)u+(xr−1)s+twhere γ, η, θ, u, s, t

do not depend on xr. Note that θ − γ, θ + η, θ − η areD/27 far from Pr−1,2r−2d−1.

Expanding the product βq, we have

βq = (x2
r − 1) ((θ − γ)u+ γt+ ηs− γs) + (xr − 1) ((θ − η)s+ ηt) + (θ + η)t.

Comparing terms, we observe that βq ∈ Pr,2r−2d−1+k iff the following three items are

true:

1. (θ − γ)u+ γt+ ηs− γs ∈ Pr−1,2r−2d−1+k−2,

2. (θ − η)s+ ηt ∈ Pr−1,2r−2d−1+k−1,

3. (θ + η)t ∈ Pr−1,2r−2d−1+k.

Since u ∈ Pr,k−2, s ∈ Pr,k−1, t ∈ Pr,k, this is equivalent to the following (written in

reverse order):

1. t ∈ Br−1
d−1,k(θ + η),

2. s ∈ −ηt+Br−1
d−1,k−1(θ − η),

3. r ∈ γs− ηs− γt+Br−1
d−1,k−2(θ − γ).

Since t, s, u belongs to sets with the same size asBr−1
d−1,k(θ+η), Br−1

d−1,k−1(θ−η), Br−1
d−1,k−2(θ−

γ) respectively and each choice gives a distinct element ofBr
d,k(β), we get the following

equality.

dim(Br
d,k(β)) = dim(Br−1

d−1,k(θ+η))+dim(Br−1
d−1,k−1(θ−η))+dim(Br−1

d−1,k−2(θ−γ))

46



Combining this with dim(Pr,k) = dim(Pr−1,k) + dim(Pr−1,k−1) + dim(Pr−1,k−2),

we obtain

dim(Pr,k/B
r
d,k(β)) = dim(Pr−1,k/B

r−1
d−1,k(θ + η)) + dim(Pr−1,k−1/B

r−1
d−1,k−1(θ − η))

+ dim(Pr−1,k−2/Br−1
d−1,k−2(θ − γ))

≥ Φd−1,k(D/27) + Φd−1,k−1(D/27) + Φd−1,k−2(D/27).

The last inequality follows from the fact that θ − γ, θ + η, θ − η areD/27 far from

Pr−1,2r−2d−1 = Pr−1,2(r−1)−2(d−1)−1. Thus, proved.

To prove Lemma 4.7, we start withΦd,d(3
d/2) and apply Claim 4.11 recursively d/6−

2 times and finally use the base case from Claim 4.9 (this can be done as long as d/6 −

2 ≤ d/2). This gives rank(Qβ) ≥ Φd,d(3
d/2) ≥ 3d/6−2 ≥ 3d/9 as long as d0 is large

enough.

Lemma 4.12. If α : Fr
3 → F3 such that ∆(α,P⊥

r,2d) > 3d/2 then

∣∣∣∣ E
p∈Pr,d

χα(p
2)

∣∣∣∣ ≤ 3−Ω(3d/9).

Proof. By definition
∣∣Ep∈Pr,d

χα(p
2)
∣∣ = ∣∣∣Ep∈Pr,d

ω⟨α,p2⟩
∣∣∣. If α : Fr

3 → F3 is such

that∆(α,P⊥
r,2d) > 3d/2 then for a random p ∈ Pr,d, ⟨α, p2⟩ is 3−Ω(3d/9)-close to the

uniform distribution on F3 according to Lemma 4.7 and Lemma 4.4.
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5
Independent Sets in Graph Products

In this chapter, we will use the testing results from the previous chapter, to obtain de-

randomized graph product results. Gadgets constructed from graph products were pre-

viously used in graph coloring hardness reductions. By derandomized graph products,

we mean that there are subgraphs of these graph products, with much smaller size, that

have the properties to make the hardness reductions work. These properties are also of

independent interest as a combinatorial question.

5.1 Graph Products

We consider the following graph product result due to Alon et al. [ADFS04]. Con-

sider the undirected weighted graphK3 on the three vertices V = {0, 1, 2} and edges

weighted as follows: W (f, f ′) = 1/2 if f ′ ̸= f ∈ {0, 1, 2} and 0 otherwise. LetK⊗R
3

be the graph with vertex set V ⊗R and weights-matrix theR-wise tensor of the matrix

W . Consider independent sets in this wieghted graph (which are sets such that for ev-

ery edge with non-zero weight, both end points does not lie in the set). Clearly, for any

i ∈ [R] and a ∈ {0, 1, 2}, the set Vi,a := {v ∈ V ⊗R : vi = a} is an independent

set inK⊗R
3 of fractional size 1/3 sinceK3 does not have any self loops. We call such an

independent set a dictator for obvious reasons. Alon et al. [ADFS04] showed that these

are the maximal independent sets inK⊗R
3 and in fact any independent set of size close
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to the maximum is close to a dictator.

Theorem 5.1 (Alon et al. [ADFS04]). Let A be an independent set in K⊗R
3 of size δ3R.

Then,

1. δ ≤ 1/3.

2. δ = 1/3 iff A ॹ a dictator.

3. If δ ≥ 1/3 − ε, then A ॹ O(ε)-close to a dictator. That ॹ, there ॹ a dictator A′

such that |A∆A′| = O(ε3R).

One may ask if something can be said about independent set of constant density.

While studying the hardness of approximate graph coloring, Dinur, Mossel & Regev [DMR09]

proved the following “majority is stablest” type of result: if there is a pair of subsets of

vertices inK⊗R
3 of sufficiently large size such that the average weight of edges between

them is small, then their indicator functions must have a common influential coordi-

nate. Subsequently, Dinur & Shinkar [DS10] obtained the following quantitative im-

provement to the above theorem.

Theorem 5.2 (Dinur & Shinkar [DS10, Theorem 1.3]). For all µ > 0 there exists δ =

µO(1) and k = O(log 1/µ) such that the following holds: For any two functions A,B :

{0, 1, 2}R → [0, 1] if

EA > µ, EB > µ, and E
f,f ′

A(f)B(f ′) ≤ δ*

where f ॹ chosen randomly from V ⊗R and f ′ ॹ chosen with probability W⊗R(f, f ′)

then

∃x ∈ [R] such that Inf≤k
x (A) ≥ δ and Inf≤k

x (B) ≥ δ.

*The hypothesis in the theorem statement of Dinur-Shinkar [DS10] requires Ef,f ′ A(f)B(f ′) =
0, however it is easy to check that their theorem also holds good under the weaker hypothesis
Ef,f ′ A(f)B(f ′) ≤ δ.
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5.2 Derandomized Graph Products

The product graphK⊗R
3 has 3R vertices. In this section , we show that that there exists

a considerably smaller subgraph G = (V , E) ofK⊗R with only 3poly(logR) vertices

that has the same properties. In order to describe the subgraph, it will be convenient to

think ofK3 as having vertex set F3 and

W (f, f ′) = Pr
p∈F3,a∈{1,2}

[f ′ = f + a(p2 + 1)].

Let r and d be two parameters and letR = 3r. Note that V ⊗R can be identified with

Pr,2r, since Pr,2r is the set of all functions from Fr
3 to F3. The subgraph Gd = (V , E) is

as follows : V := Pr,2d and the edges are given by the weights-matrix defined below

W(f, f ′) = Pr
p∈Pr,d,a∈{1,2}

[f ′ = f + a(p2 + 1)].

Note that since Pr,2d is a subspace of dimension rO(d), the size of the vertex set is 3rO(d) ,

which is considerably smaller than 3R for constant d.

Theorem 5.3. There ॹ a constant d for which the following holds. If A ॹ an independent

set of size δ|V| in Gd then

1. δ ≤ 1/3.

2. δ = 1/3 iff A ॹ a dictator.

3. If δ ≥ 1/3− ε then A ॹ O(ε)-close to a dictator.

A crucial element in the proof of Theorem 5.1 is a hypercontractivity theorem for

functions which do not have any heavy Fourier coefficients. Theorem 5.3 is proved by

observing that a similar hypercontractivity theorem also holds good in the low-degree

long code setting (see Lemma 3.18).
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Proof of 1. For f ∈ V , consider the set {f, f + 1, f + 2} ⊆ V . These sets form a

partition of V and are triangles in the graph. Hence δ ≤ 1/3.

Proof of 2. LetA : Pr,2d → {0, 1} be the indicator set of the independent set of size

δ|V |. By Parseval’s equation and the fact that Â0 = δ, we have that

∑
α∈Λr,2d\{0}

|Âα|2 = δ − δ2. (5.2.1)

SinceA is an independent set,

E
p∈Pr,d,a∈F3,f∈Pr,2d

A(f)A(f+a(p2+1)) =
∑

α∈Λr,2d

|Âα|2 E
p∈Pr,d,a∈F3

χα(a(p
2+1)) = 0.

Taking the real parts of the equation on both sides and rearranging, we get

∑
α∈Λr,2d\{0}

|Âα|2Re
(

E
p∈Pr,d

χα(p
2 + 1)

)
= −δ2. (5.2.2)

Let T be a random variable such that Pr[T = α] = |Âα|2/(δ − δ2) andX be the

random variableX(T ) = Re
(
Ep∈Pr,d,a∈F3 χα(a(p

2 + 1))
)
. From (5.2.1) and (5.2.2),

we have that

EX =
−δ

1− δ
.

Since p is a random degree d polynomial, it is 3d/2-wise independent from Lemma 3.10.

So if |T | ≤ 3d/2,

∣∣∣∣Re( E
p∈Pr,d,a∈F3

χα(a(p
2 + 1))

)∣∣∣∣ = ∣∣∣∣12 Re

((
ω2 − 1

3

)|α|1 (ω − 1

3

)|α|2

+

(
ω − 1

3

)|α|1 (ω2 − 1

3

)|α|2 )∣∣∣∣
≤
(

1√
3

)|α|
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where |α|a = {x ∈ Fr
3 : α(x) = a}.

If |T | > 3d/2, we know from Lemma 4.12 that |X(T )| ≤ 3−Ω(3d/9).

Note that for T with |T | = 1,X(T ) = −1/2. For T with |T | = 2,X(T ) ≥ 0. For

T with |T | ≥ 3, X(T ) ≥ −1
3
√
3
. So ifEX = −1/2 thenPr[|T | = 1] = 1. SoA is a

Boolean valued function with non zero Fourier coefficients of support size only 0 and 1.

From Lemma 3.17,A is a generalized dictator function.

Proof of 3. Suppose δ = 1/3 − ε. First we show that most of Fourier weights are

concentrated in the first two levels

Lemma 5.4. ∑
α∈Λr,2d:|α|>1

|Âα|2 ≤ 2ε

Proof. Consider the random variablesX and T defined in the Proof of 2. Since δ =

1/3− ε and since ε < 1/3, EX = −1/2 + ε. Let Y be the random variableX + 1/2.

Note that Y ≥ 0 and when Y > 0, Y ≥ 1/6. Therefore by Markov,Pr[Y > 0] ≤ 6ε

and

∑
α∈Λr,2d:|α|>1

|Âα|2 ≤ (δ − δ2) Pr[Y > 0] ≤ 2ε.

Then we use Lemma 3.19 to obtain the result.

5.3 Derandomized Majority is Stablest

We also show that an analogue of Theorem 5.2 also holds for the subgraph G. For defin-

ing influence for real valued functions on Pr,2d, we note that the characters of Pr,2d are
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restrictions of characters of FR
3 ≡ Pr,2r. So the definition of influence for functions on

FR
3 also extends naturally to functions on Pr,2d.

Theorem 5.5. For all µ > 0 there exists δ = µO(1), k = O(log 1/µ), d = O(log 1/µ)

such that the following holds: For any two functions A,B : Pr,2d → [0, 1] if

EA > µ, EB > µ, and E
f,f ′

A(f)B(f ′) ≤ δ

where f ॹ chosen randomly from Pr,2d, f ′ = f + a(p2 + 1), p are chosen randomly

from Pr,d and a ∈ {1, 2} then

∃x ∈ Fr
3 such that Inf≤k

x (A) ≥ δ and Inf≤k
x (B) ≥ δ.

In this section, we prove Theorem 5.5. The graphs described in Theorem 5.5 and

Theorem 5.2 can be viewed as Cayley graphs on a suitable group. For the proof, we will

need bounds on the eigenvalues of these Cayley graphs. These bounds are obtained

from the testing results from the previous chapter. For a groupG,RG denotes the vec-

tor space of real valued functions onG.

Definition 5.6 (Cayley Operator). For a group G with operation +, an operatorM :

RG → RG ॹ a Cayley operator if there ॹ a distribution µ on G such that for any func-

tion A : G → R,

(MA)(f) = E
η∈µ

A(f + η).

It ॹ easy to see that a character χ : G → C ॹ an eigenvector of M with eigenvalue

Eη∈µ χ(η).

Definition 5.7. We define the following Cayley operators:

1. For the group F3, let T : RF3 → RF3 be the Cayley operator corresponding to the

distribution µ that ॹ uniform on F3 \ {0}. Let λ be the second largest eigenvalue
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in absolute value of T .

2. For the group Fr, let Tr : RFr → RFr be the Cayley operator corresponding to

the distribution µr that ॹ uniform on {f ∈ Fr : f
−1(0) = ∅}. Let λr(α) be the

eigenvalue of Tr corresponding to the eigenvector χα, for α ∈ Fr.

3. For the group Pr,2d, let Tr,d : RPr,2d → RPr,2d be the Cayley operator cor-

responding to the distribution µr,2d of choosing a uniformly random element in

{p2+1,−p2− 1} where p ∈ Pr,d ॹ chosen uniformly at random. Let λr,d(α) be

the eigenvalue of Tr,d corresponding to χα, for α ∈ Fr.

4. For the group Pr,2d, let Sr,d : RPr,2d → RPr,2d be the Cayley operator corre-

sponding to the distribution of a ·
∏d

i=1(ℓi − 1)(ℓi − 2) where ℓ1, · · · , ℓd are

linearly independent degree 1 polynomials chosen uniformly at random and a ॹ

randomly chosen from F3. Let ρr,d(α) be the eigenvalue of Sr,d corresponding to

χα, for α ∈ Fr.

Now we will list some known bounds of the eigenvalues of the above operators. It

is easy to see that λ is a constant< 1. Since FR
3 can be identified withFr, T⊗R can be

identified with Tr. Hence we have the following lemma.

Lemma 5.8.

|λr(α)| ≤ |λ||α|.

Lemma 5.9. For α ∈ Λr,2d,

|λr,d(α)|


= |λr(α)| if |α| ≤ 3d/2

≤ 3−3C1d otherwise.
(5.3.1)

Proof. The first case follows from the fact that a random element η according to µr,2d

(the distribution that defines Tr,d) is 3d/2-wise independent (see Lemma 3.10) as a string
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of length 3r over alphabet F3. The latter case follows from Lemma 4.12.

We will derive bounds on the eigenvalues of Sr,d using the results of Haramaty et

al. [HSS13].

Lemma 5.10. There exists constants C ′
1, C

′
2 such that, for α ∈ Λr,2d,

1− 2|α|
3d

≤ |ρr,d(α)| ≤ max

{
1− C ′

1∆(α,Pr,2r−2d−1)

3d
, C ′

2

}
(5.3.2)

Proof. First we will prove the lower bound. By definition

ρr,d(α) = E
ℓi,a

ωa·
∑

x α(x)
∏d

i=1(ℓi(x)−1)(ℓi(x)−2).

For any x in support of α, the probability that
∏d

i=1(ℓi(x)−1)(ℓi(x)−2) ̸= 0 is 1/3d.

Hence by union bound,
∏d

i=1(ℓi(x) − 1)(ℓi(x) − 2) = 0 for every x in support of α

with probability 1− |α|/3d and when this happens the expectation is 1. Also note that

the quantity inside the expectation has absolute value 1.

For proving the upper bound we will use Lemma 4.2. Let pacc be the probability

mentioned in Lemma 4.2. Then

ρr,d(α) = E
ℓi,a

ωa⟨α,
∏d

i=1(ℓi−1)(ℓi−2)⟩ = pacc +
1− pacc

2
(ω + ω2) =

3

2
pacc −

1

2
.

From the above equation and Lemma 4.2, the constantsC ′
1, C

′
2 can be obtained.

Lemma 5.11. For A,B : Pr,2d → [0, 1], let A′ := St
r,dA and similarly define B′. Then

|⟨A, Tr,dB⟩ − ⟨A′, Tr,dB
′⟩| ≤ 2dt/3d
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Proof.

|⟨A, Tr,dB⟩ − ⟨A′, Tr,dB
′⟩| ≤ |⟨A, Tr,dB⟩ − ⟨A, Tr,dB

′⟩|

+ |⟨A, Tr,dB
′⟩ − ⟨A′, Tr,dB

′⟩|

=
∣∣⟨A− EA, Tr,d(1− St

r,d)(B − EB)⟩
∣∣

+
∣∣⟨Tr,d(1− St

r,d)(A− EA), B′ − EB′⟩
∣∣

≤ ∥Tr,d(1− St
r,d)(B − EB)∥+ ∥Tr,d(1− St

r,d)(A− EA)∥

≤ 2td/3d

The last step follows from the fact that the operators Tr,d, (1−St
r,d) have the same set

of eigenvectors and the largest eigenvalue in absolute value of Tr,d(1 − St
r,d) is 2td/3d

from Lemma 5.9 and Lemma 5.10.

Theorem 5.5 will follow from the following lemma.

Lemma 5.12. ∀ε > 0, ∃k = O(1/ε2), d = O(log(1/ε)) such that the following holds:

if A,B : Pr,2d → [0, 1] then ∃A,B : Fr → [0, 1] such that

1. |EA− EA| , |EB − EB| ≤ ε,

2. For all x ∈ Fr
3, k

′ ≤ k,

Inf≤k′

x (A) ≤ Inf≤k′

x (A) + ε

Inf≤k′

x (B) ≤ Inf≤k′

x (B) + ε

3. |⟨A, Tr,dB⟩ − ⟨A, TrB⟩| ≤ ε.

Proof of Theorem 5.5. We will show that if Theorem 5.5 is false then Theorem 5.2 is also

false. First using Lemma 5.12 with parameter ε = µO(1), we obtain functionsA,B :
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Fr → [0, 1] such that

1. EA,EB ≥ µ− ε ,

2. For all x ∈ Fr
2, k

′ ≤ k,

Inf≤k′

x (A) ≤ δ + ε and Inf≤k′

x (B) ≤ δ + ε

3. |⟨A, TrB⟩| ≤ |⟨A, Tr,dB⟩|+ ε.

Now applying Theorem 5.2 to the functionsA,B, we obtain that |⟨A, TrB⟩| ≥ δ′,

where δ′ = µO(1). Hence |⟨A, Tr,dB⟩| ≥ δ′ − ε, and we set the parameters δ = δ′ − ε,

d = O(log 1/µ) and k = O(log 1/µ).

5.3.1 Proof of Lemma 5.12

For proving Lemma 5.12, crucially use the following lemma by Kane & Meka [KM13].

Lemma 5.13. Let ξ : R → R+ be the function ξ(x) := (max{−x, x− 1, 0})2 †.

For any parameters k ∈ N and ε ∈ (0, 1), there ॹ a d = O(log(k/ε)) such that the

following holds: If the polynomial P : Fr → R satॹfiॸ ∥P∥ ≤ 1 and P̂ (α) = 0 for

α ∈ Λr,d such that |α| > k, then

∣∣∣∣ E
f∈Fr

ξ(P (f))− E
f∈Pr,d

ξ(P (f))

∣∣∣∣ ≤ ε.

Remark 5.14. For proving Lemma 5.13, we need a generalization of [KM13, Lemma 4.1]

in the paper of Kane & Meka. [KM13, Lemma 4.1] considers uniform distribution over

{−1,+1}R, but we need a similar result for uniform distribution over {1, ω, ω2}R.
†ξ(x) represents the distance of x from the interval [0, 1]
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However, we observe that the polynomials we consider are real-valued P : Fr → R and

hence satisfy P̂ (α) = P (−α).

Using thॹ observation, the proof of Kane & Meka [KM13, Lemma 4.1] general-

izॸ to our setting (the above property ॹ preserved throughout the proof). The result

of [KM13] also requirॸ an earlier result of Diakonikolॷ, Gopalan, Jaiswal, Servedio

& Viola [DGJ+10] on fooling Linear Threshold functions (LTFs) with sample spacॸ of

bounded independence. A generalization of [DGJ+10] ॹ also known due to Gopalan et

al. ([GOWZ10, Theorem I.5]) for uniform distribution over {1, ω, ω2}R.

Proof of Lemma 5.12. Let t = 3d log(10/ε)
2k

, andA1 = St
r,dA,B1 = St

r,dB. Then from

Lemma 5.11

|⟨A, Tr,dB⟩ − ⟨A1, Tr,dB1⟩| ≤ 2dt/3d (5.3.3)

and similarly forB1. Let k be a number< 3d/2 andA2 = Re(A≤k
1 ). Using the fact

thatA1 is real valued,

∥A1 − A2∥ ≤ ∥A1 − A≤k
1 ∥ ≤ (1− 2k/3d)t ≤ e−2tk/3d = ε/10 (5.3.4)

LetA3 : Fr → R be defined asA3 := Re((A≤k
1 )′)where (A≤k

1 )′ is the lift (Defi-

nition 3.21) ofA≤k
1 . Since a random degree d polynomial is 3d/2-wise independent (see

Lemma 3.10),

⟨A2, Tr,dB2⟩ = ⟨A3, TrB3⟩ (5.3.5)

Note thatA3 may not be a [0, 1]-valued function. But sinceA is [0, 1]-valued, so is

A1. Let ξ : R → R+ be the function ξ(x) := (max{−x, x− 1, 0})2. Notice that

Ef ξ ◦ A(f) gives the ℓ22 distance ofA from [0, 1]-valued functions. Using Lemma 5.13,
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for d = O(log(k/ε)),

∣∣∣∣ E
f∈Pr,2d

ξ(A2(f))− E
f∈Fr

ξ(A3(f))

∣∣∣∣ ≤ ε/10 (5.3.6)

and similarly forB2. Hence there exists functionsA,B : Fr → [0, 1] such that

1. |EA− EA| ≤ ||A′
1 −A|| ≤ ε (similarly forB),

2. For all x ∈ Fr
3, k

′ ≤ k, Inf≤k′

x (A) ≤ Inf≤k′

x (A) + ε (similarly forB),

3. |⟨A, Tr,dB⟩ − ⟨A, TrB⟩| ≤ ε.
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Part III

Hardness of Approximate Coloring
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6
PCPs & Hardness of Approximation

In this chapter, we will review some of the fundamental results in hardness of approxi-

mation. One of the main results is an alternate characterization for NP. Recall the def-

inition of NP (Definition 1.3). For the verifier of an NP problem, the proof length is at

most a polynomial in n. The alternate characterization deals with probabilistic verifiers,

that query only a few bits in the proof.

Definition 6.1 (PCPc,s[t, q, R]). A PCPc,s[t(n), q(n), R]-Verifier ( PCP stands for Prob-

abilistically Checkable Proofs) for a decision problem L, ॹ an algorithm V which takॸ

an input x, a random string y ∈ {0, 1}t(n), hॷ oracle access to a proof π over alphabet

[R] of length 2t(n) and satॹfiॸ the following propertiॸ:

• V runs in polynomial time in the length of x for all y, π.

• V queriॸ π in at most q(n) bits on all inputs.

• Completeness: If x ∈ L then there exists π such that Pry[V (x, π) = 1] ≥ c.

• Soundness : If x /∈ L then for any π, Pry[V (x, π) = 1] ≤ s.

PCPc,s[t, q, R] ॹ the class of decision problems that have a PCPc,s[t, q, R]-Verifier.

It is not difficult to see that, for any q, constantR and s < c,

PCPc,s[O(log n), q, R] ⊆ NP.
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A major breakthrough in PCP characterizations, which lead to many hardness of ap-

proximation results was the following theorem due to Arora & Safra [AS98] and Arora

et al. [ALM+98].

Theorem 6.2 (PCP Theorem). There exists constant s < 1, q, R such that

NP ⊆ PCP1,s[O(log n), q, R].

In the above form, it is not clear how the theorem might be useful in hardness of

approximation results. The theorem can be stated equivalently as a hardness of approx-

imation result.

Theorem 6.3 (Hardness of Approximating Max-3-SAT). There exists a constant s < 1,

such that it ॹ NP-Hard to distinguish satॹfiable Max-3-SAT instancॸ, from onॸ for

which any assignment can satisfy at most s fraction of the clausॸ.

It is easy to see that the above theorem is equivalent to having a PCP1,s[O(log n), 3, 2]-

Verifier for Max-3-SAT, whose checks are Max-3-SAT clauses. The equivalence fol-

lows from viewing such verifiers as Max-3-SAT instances and vice versa. Any such ver-

ifier could be converted to a Max-3-SAT instance. The instance is obtained by adding

a variable for every bit of the proof, and adding a Max-3-SAT clause for every check

the verifier makes. Any Max-3-SAT instance, has a trivial PCP verification procedure,

whose proof is the assignment and the verifier chooses a random clause, and checks if it

is satisfied by the assignment.

6.1 Label Cover

The PCP theorem stated in terms hardness of approximation of Max-3-SAT, does not

give optimal inapproximability results (see Håstad [Hås01]). To get strong results, it is
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used in conjunction with the parallel repetition theorem of Raz [Raz98]. This strong

version of PCP theorem is usually stated in terms of the Label-Cover problem.

Definition 6.4 (Label-Cover). An instance G = (U, V,E, L,R, {πe}e∈E) of the LC

constraint satisfaction problem consists of a bi-regular bipartite graph (U, V,E), two sets

of alphabets R and L and a projection map πe : R → L for every edge e ∈ E. Given

a labeling ℓ : U → R, ℓ : V → L, an edge e = (u, v) ॹ said to be satॹfied by ℓ if

πe(ℓ(v)) = ℓ(u).

G ॹ said to be at most δ-satॹfiable if every labeling satॹfiॸ at most a δ fraction of the

edgॸ.

An instance of Unique-Game ॹ a label cover instance where L = R and the con-

straints π are permutations.

We consider label cover instances obtained from 3-SAT instances in the following

natural manner.

Definition 6.5 (r-repeated label cover). Let φ be a 3-SAT instance with X ॷ the set of

variablॸ and C the set of clausॸ. The r-repeated bipartite label cover instance I(φ) ॹ

specified by:

• A graph G := (U, V,E), where U := Cr, V := Xr.

• ΣU := {0, 1}3r,ΣV := {0, 1}r.

• There ॹ an edge (u, v) ∈ E if the tuple of variablॸ v can be obtained from the

tuple of clausॸ u by replacing each clause by a variable in it.

• The constraint πuv : {0, 1}3r → {0, 1}r ॹ simply the projection of the assign-

ments on 3r variablॸ in all the clausॸ in u to the assignments on the r variablॸ

in v.
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• For each u there ॹ a set of r functions {fu
i : {0, 1}3r → {0, 1}}ri=1 such that

fu
i (a) = 0 iff the assignment a satॹfiॸ the ith clause in u. Note that fu

i depends

only on the 3 variablॸ in the ith clause.

A labeling LU : U → ΣU , LV : V → ΣV satॹfiॸ an edge (u, v) iff πuv(LU(u)) =

LV (v) and LU(u) satॹfiॸ all the clausॸ in u. Let OPT(I(φ)) be the maximal fraction

of constraints that can be satॹfied by any labeling.

The following theorem is obtained by applying parallel repetition theorem of Raz [Raz98]

with r repetitions on hard instances of Max-3-SAT where each variable occurs the

same number of times (see Feige’s result [Fei98]) and a structural property proved by

Håstad [Hås01, Lemma 6.9].

Theorem 6.6. There ॹ an algorithm which on input a 3-SAT instance φ and r ∈ N

outputs an r-repeated label cover instance I(φ) in time nO(r) with the following proper-

tiॸ.

• Completeness: If φ ∈ 3-SAT, then OPT(I(φ)) = 1.

• Soundnॸ: If φ /∈ 3-SAT, then OPT(I(φ)) ≤ 2−ε0r for some universal constant

ε0 ∈ (0, 1).

• Smooth Projections:

∀v ∈ V, α ⊂ R, Pru [|πuv(α)| < |α|c0 ] ≤ 1

|α|c0
.

Moreover, the underlying graph G ॹ both left and right regular.

For our hardness results for 3-uniform 3-colorable hypergraphs, we need a multipar-

tite version of label cover, satisfying a smoothness condition.
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Definition 6.7 ([Kho02b]). Let I be a bipartite label cover instance specified by ((U, V,E),ΣU ,ΣV ,Π).

Then I ॹ η-smooth iff for every u ∈ U and two distinct labels a, b ∈ ΣU

Pr
v
[πuv(a) = πuv(b)] ≤ η,

where v ॹ a random neighbour of u.

Definition 6.8 (r-repeated ℓ-layered η-smooth label cover). Let T := ⌈ℓ/η⌉ and φ be

a 3-SAT instance with X ॷ the set of variablॸ and C the set of clausॸ. The r-repeated

ℓ-layered η-smooth label cover instance I(φ) ॹ specified by:

• An ℓ-partite graph with vertex sets V0, · · ·Vℓ−1. Elements of Vi are tuplॸ of the

form (C ′, X ′) where C ′ ॹ a set of (T + ℓ − i)r clausॸ and X ′ ॹ a a set of ir

variablॸ.

• ΣVi
:= {0, 1}mi wheremi := 3(T + ℓ− i)r + ir which corresponds to all

Boolean assignments to the clausॸ and variablॸ corresponding to a vertex in layer

Vi.

• For 0 ≤ i < j < ℓ, Eij ⊆ Vi × Vj denotॸ the set of edgॸ between layers Vi and

Vj . For vi ∈ Vi, vj ∈ Vj , there ॹ an edge (vi, vj) ∈ Eij iff vj can be obtained

from vi by replacing some (j − i)r clausॸ in vi with variablॸ occurring in the

clausॸ respectively.

• The constraint πvivj ॹ the projection of assignments for clausॸ and variablॸ in vi

to that of vj .

• For each i < ℓ, vi ∈ Vi, there are (T+ℓ−i)r functions f vi
j : {0, 1}3(T+ℓ−i)r+ir →

{0, 1}, one for each clause j in vi such that f vi
j (a) = 0 iff a satॹfiॸ the clause j.

Thॹ function only depends on the 3 coordinatॸ in j.
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Given a labeling Li : Vi → ΣVi
for all the verticॸ, an edge (vi, vj) ∈ Eij ॹ sat-

ॹfied iff Li(vi) satॹfiॸ all the clausॸ in vi, Lj(vj) satॹfiॸ all the clausॸ in vj and

πvivj(Li(vi)) = Lj(vj). Let OPTij(I(φ)) be the maximum fraction of edgॸ in Eij

that can be satॹfied by any labeling.

The following theorem was proved by Dinur et al. [DGKR05] in the context of hy-

pergraph vertex cover inapproximability (also see results of Dinur, Regev & Smyth [DRS05]).

Theorem 6.9. There ॹ an algorithm which on input a 3-SAT instance φ and ℓ, r ∈

N, η ∈ [0, 1) outputs a r-repeated ℓ-layered η-smooth label cover instance I(φ) in time

nO((1+1/η)ℓr) with the following propertiॸ.

1. ∀ 0 ≤ i < j < ℓ, the bipartite label cover instance on Iij =
(
(Vi, Vj, Eij),ΣVi

,ΣVj
,Πij

)
ॹ η-smooth.

2. For 1 < m < ℓ, anym layers 0 ≤ i1 < · · · < im ≤ ℓ − 1, any Sij ⊆ Vij such

that |Sij | ≥ 2
m
|Vij |, there exists distinct ij and ij′ such that the fraction of edgॸ

between Sij and Sij′
relative to Eijij′

ॹ at least 1/m2.

3. If φ ∈ 3-SAT, then there ॹ a labeling for I(φ) that satॹfiॸ all the constraints.

4. If φ /∈ 3-SAT, then

OPTi,j(I(φ)) ≤ 2−Ω(r), ∀0 ≤ i < j ≤ ℓ.

6.2 Unique Games Conjecture

Khot observed [Kho02c] that if the label sets in the Label-Cover instance are the

same and the projections are permutations, then the hardness reductions could be sim-

plified. He made the conjecture that Label-Cover is hard to approximate to any con-

stant factor, restricted to such kind of instances.
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Definition 6.10 (Unique Games Conjecture). For every δ there exists a large enough R

such that it ॹ hard to distinguish between Unique-Game instancॸ G have label size R

from the following casॸ.

• YES case : OPT(G) ≥ 1− δ

• NO case : OPT ≤ δ

Starting with the work of Khot [Kho02c], it was shown that UGC, explains the

lack of efficient approximation algorithms for a variety of problems (eg. Vertex Cover,

MAX-CUT).
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7
Long Code Bottleneck

The last two decades have seen tremendous progress in understanding the hardness of

approximating constraint satisfaction problems. Despite this progress, the status of ap-

proximate coloring of constant colorable (hyper)graphs is not resolved and in fact, there

is an exponential (if not doubly exponential) gap between the best known approxima-

tion algorithms and inapproximability results. The current best known approximation

algorithms require at least nΩ(1) colors to color a constant colorable (hyper)graph on n

vertices while the best inapproximability results only rule out at best (log n)O(1) (and in

fact, in most cases, only o(log n)) colors.

Given this disparity between the positive and negative results, it is natural to ask why

current inapproximability techniques get stuck at the poly log n color barrier. The

primary bottleneck in going past polylogarithmic colors is the use of the long code, a

quintessential ingredient in almost all tight inapproximability results, since it was first

introduced by Bellare, Goldreich & Sudan [BGS98].

Definition 7.1 (Long Code). For a label ℓ ∈ {0, 1}r, the long code encoding Aℓ : Fr →

{0, 1} ॹ given by

∀f ∈ Fr, Aℓ(f) := f(ℓ).

The long code, as the name suggests, is the most redundant encoding, wherein a r-

bit Boolean string x is encoded by a 22r -bit string which consists of the evaluation of
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all Boolean functions on r bits at the point x. It is this doubly exponential blow-up of

the long code which prevents the coloring inapproximability to go past the poly log n

barrier.

7.1 Low-Degree Long Code

Recently, Barak et al. [BGH+12], while trying to understanding the tightness of the

Arora-Barak-Steurer algorithm for Unique Games, introduced the short code, also called

the low-degree long code [DG14]. The low-degree long code is a puncturing of the long

code in the sense, that it contains only the evaluations of low-degree functions (op-

posed to all functions). Barak et al. [BGH+12] introduced the low-degree long code to

prove exponentially stronger integrality gaps for Unique Games, and construct small set

expanders whose Laplacians have many small eigenvalues,

Definition 7.2 (Low-Degree Long Code). For a ∈ Fn
p , the degree d long code for a ॹ a

function LCd(a) : Pn
d → Fp defined ॷ

LCd(a)(f) := f(a).

Note that for d = (p − 1)n, this matches with the definition of the original long code

over the alphabet Fp.

Being a derandomization of the long code, one might hope to use the low-degree

long code as a more size-efficient surrogate for the long code in inapproximability re-

sults. In fact, Barak et al. [BGH+12] used it obtain a more efficient version of the KKMO

alphabet reduction [KKMO07] for Unique Games. However, using the low-degree

long code towards improved reductions from Label Cover posed some challenges re-

lated to folding, and incorporating noise without giving up perfect completeness (which

is crucial for results on coloring). Recently, Dinur & Guruswami [DG14] introduced a
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very elegant set of techniques to adapt the long code based inapproximability results

to low-degree long codes. Using these techniques, they proved (1) improved inapprox-

imability results for gap-(1, 15
16

+ ε)-4SAT for ε = exp(−2Ω(
√
log logN)) (long code

based reductions show for ε = 1/poly logN ) and (2) hardness for a variant of approx-

imate hypergraph coloring, with a gap of 2 and exp(2Ω(
√
log logN)) number of colors

(whereN is the number of vertices). It is to be noted that the latter is the first result to

go beyond the logarithmic barrier for a coloring-type problem. However, the Dinur-

Guruswami [DG14] results do not extend to standard (hyper)graph coloring hardness

due to a multipartite structural bottleneck in the PCP construction, which we elaborate

below.

As mentioned earlier, the two main contributions of Dinur-Guruswami [DG14] are

(1) folding mechanism over the low-degree long code and (2) noise in the low-degree

polynomials. The results of Bhattacharyya et al. [BKS+10] and Barak et al. [BGH+12]

suggest that the product of d linearly independent affine functions suffices to work as

noise for the low-degree long code setting (with degree = d) in the sense that it attenu-

ates the contribution of large weight Fourier coefficients. However, this works only for

PCP tests with imperfect completeness. Since approximate coloring results require per-

fect completeness, Dinur & Guruswami [DG14] inspired by the above result, develop

a noise function which is the product of two random low-degree polynomials such that

the sum of the degrees is at most d. This necessitates restricting certain functions in

the PCP test to be of smaller degree which in turn requires the PCP tests to query two

types of tables – one a low-degree long code of degree d and another a low-degree long

code of smaller degree. Though the latter table is a part of the former, a separate table is

needed since otherwise the queries will be biased to the small degree portion of the low-

degree long code. This multipartite structure is what precludes them from extending

their result for standard coloring results. (Clearly, if the query of the PCP tests straddles

two tables, then the associated hypergraph is trivially 2-colorable.)
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Building on the Dinur-Guruswami framework, in Chapter 9, by a simple test for

low-degree long code, we show that it is quasi-NP-hard to color a 4-colorable 4-uniform

hypergraph with 22Ω(
√
log logn) colors.

7.2 Quadratic Label Cover

Both the Dinur-Guruswami and our results were obtained by modifying the innermost

PCP verifier to work with the low-degree long code. Shortly thereafter, in a remark-

able improvement, Khot & Saket [KS14a] showed that it is quasi-NP-hard to color a

2-colorable 12-uniform hypergraph with 2(logn)Ω(1) colors. They obtained this result

by using an 12-query inner PCP verifier based on the quadratic code, ie., a low-degree

long code with degree two. Since degree 2 functions can be represented as matrices, the

quadratic code has an alternative simpler definition.

Our focus will be the case when the field F has characteristic 2. Let Fm×m be the

vector space ofm×mmatrices over the field F.

Definition 7.3 (Quadratic Code). The quadratic code of x ∈ Fm ॹ a function Ax :

Fm×m → F defined ॷ Ax(X) := ⟨X, x⊗ x⟩.

However, to use a quadratic code based inner verifier, they needed an outer PCP ver-

ifier with a significantly stronger soundness guarantee than the standard outer PCP ver-

ifier obtained from parallel repetition of the PCP Theorem. In particular, they needed

an outer PCP verifier, which in the soundness case, would not be satisfied by a short list

of proofs even in superposition*. The construction of this outer PCP verifier with this

stronger soundness guarantee is the main technical ingredient in the result of Khot &

Saket [KS14a].
*We will not require the exact definition of satisfying in superposition for this note. See Theorem 7.4

for the details of the Khot-Saket outer PCP verifier.
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Our reductions makes use of the following outer PCP verifier of Khot & Saket [KS14a].

As stated in the introduction, these instances have stronger soundness conditions which

make them amenable for composition with a quadratic code based inner verifier.

Theorem 7.4 (Khot & Saket [KS14a, , Theorem 7.2]). There ॹ a quasi-polynomial

time reduction from an instance of 3-SAT to a bi-regular instance (U, V,E,Π) of La-

bel Cover such that

• Vertex sets U and V are bounded in size by N .

• The label sets are Fr×r
2 ,Fm×m

2 for U and V respectively.

• For e ∈ E, the map πe : Fm×m
2 → Fr×r

2 ॹ a linear transformation that maps

symmetric matricॸ to symmetric matricॸ†. For an r × r matrix X , X ◦ πe ॹ the

uniquem×m matrix such that ⟨X ◦ πe, Y ⟩ = ⟨X, πeY ⟩.

• For each vertex v ∈ V , there ॹ a constraint Cv that ॹ a a conjunction of homoge-

neoॺ linear equations on the entriॸ of the m×m matrix label.

• δ ≤ 2− log1/3 N and k ≥ (logN)1/9.

The reduction satॹfiॸ:

1. Completeness : If the 3-SAT instance ॹ satॹfiable then there ॹ a labeling xu ⊗ xu

for u ∈ U and yv ⊗ yv for v ∈ V such that

• for each v ∈ V , yv ∈ Fm
2 hॷ the mth coordinate 1 and yv ⊗ yv satॹfiॸ the

constraint Cv,

• for each (u, v) ∈ E, πu,v(yv ⊗ yv) = xu ⊗ xu.
†The property that π maps symmetric matrices to symmetric matrices is easy to see from the proof of

[KS14a, Theorem 7.2].
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2. Soundness : If the 3-SAT instance ॹ not satॹfiable then the following cannot hold:

There are symmetric matricॸ Mu ∈ Fr×r
2 ,Mv ∈ Fm×m

2 for u ∈ U, v ∈ V of

rank ≤ k such that

• for each v ∈ V ,Mv ∈ Fm×m
2 hॷ the (m,m)th coordinate 1 andMv

satॹfiॸ the constraint Cv,

• for δ fraction of edgॸ e, πe(Mv) = Mu.

3. Smoothness : For any v ∈ V and any symmetric non-zero matrix Mv with rank

≤ k, over a random choice of an edge e incident on v,

Pr[πe(Mv) = 0] ≤ δ/2.
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8
Almost Coloring of Graphs

In this chapter, we describe our hardness results on almost graph coloring (joint work

with Dinur, Harsha & Srinivasan [DHSV15]). Recall the discussion on graph color-

ing algorithms and hardness results from Section 1.3. Given a 3-colorable graph, best

known algorithms give a n0.19996-coloring [KT14] and it is known that finding a 4-

coloring is NP-Hard [GK04]. Assuming UGC, Dinur, Mossel & Regev [DMR09],

showed that, given an almost 3-colorable graph, it is hard to find aC-coloring for any

constantC . Their exact result is as follows:

Theorem 8.1 (Dinur, Mossel & Regev [DMR09]). There ॹ a reduction from Unique-

Game instancॸ G with n verticॸ and label set [R] to graphs G of size n3R such that

• YES: If G ॹ an instance of Unique-Game with OPT(G) ≥ 1− ε then there ॹ

a subgraph of G with fractional size 1− poly(ε) that ॹ 3-colorable.

• NO: If G ॹ an instance of Unique-Game with soundness OPT(G) ≤ δ then G

doॸ not have any independent sets of fractional size O(1/ log(1/δ)).

For any constantC , taking δ to be a small enough constant will ensure that the chro-

matic number is≥ C in the NO case. For getting hardness results with super-constant

C , requires us to have sub-constant δ which depends on n. In UGC, the relation be-

tween the the label sizeR and soundness δ is not specified. ButR = Ω(1/δ), since a
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random labeling to a Unique-Game instance, satisfiesO(1/R) fraction of the con-

straints. Assuming UGC, withR = poly(1/δ) and δ = 1/poly(log n), will ensure that

(1) in the NO case, the chromatic number isΩ(log log n) and (2) size of G is poly(n).

Dinur & Shinkar [DS10] improved the analysis of the reduction, to show that there

are no independent sets of fractional sizeO(1/poly(δ)) in the NO case. Using the same

assumption mentioned earlier, this implies hardness for chromatic numberΩ(poly(log n)).

However for these results to hold, the alphabet sizeR has to beO(log n).

In this chapter, we give a more efficient reduction, which ensures that the size of

G remains small even whenR = 22
O(

√
log logn) . The reduction of Dinur, Mossel &

Regev [DMR09], used the graph product described in Section 5.1 as a gadget. This is

the reason why the size of G is n3R. We replace this gadget by the derandomized graph

product construction from Section 5.2. This ensures that the size of G is n3polyδ(logR).

Hence the reduction remains polynomial time, even when the alphabet size is much

larger than log n.

For getting the hardness result, we need to assume a conjecture similar to the Unique

Games Conjecture with specific parameters.

Conjecture 8.2 ((c(n), s(n), r(n))-UG Conjecture). It ॹ NP-Hard to distinguish be-

tween unique label cover instancॸ (U, V,E,R,Π) on n verticॸ and R = Fr(n)
3 from

the following casॸ:

• YES Case : There ॹ a labeling and a set S ⊆ V of size (1 − c(n))|V | such that

all edgॸ between verticॸ in S are satॹfied.

• NO Case : For any labeling, at most s(n) fraction of edgॸ are satॹfied.

Khot & Regev [KR08] proved that the Unique Games Conjecture implies that for

any constants c, s ∈ (0, 1/2) there is a constant r such that (c, s, r)-UG Conjecture
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is true. We also require that the constraints of the Unique Games instance are full rank

linear maps.

Definition 8.3 (Linear constraint). A constraint π : R → L ॹ a linear constraint of iff

R = L = Fr
3, and π ॹ a linear map of rank r.

Theorem 8.4. There ॹ a reduction from (c, s, r)-Unique Label Cover instancॸ G with

n verticॸ, label set Fr
3 and linear constraints to graphs G of size n3rO(log 1/µ) where µ =

poly(s) such that

• If G belongs to the YES case of (c, s, r)-UG then there ॹ a subgraph of G with

fractional size 1− c that ॹ 3-colorable.

• If G belongs to the NO case of (c, s, r)-UG Conjecture then G doॸ not have any

independent sets of fractional size µ.

Due to the efficiency of reduction, we are able to get hardness results even if the la-

bel cover instances had super-polylogarithmic sized label sets of size at most 22O(
√

log logn)

while the reduction due to Dinur and Shinkar only worked if label set is of sizeO(logc n)

for some constant c. However we get this improvement only when soundness of the la-

bel cover s(n) = 1/2O(
√
log logn). We remark that we can improve the conclusion if

Theorem 5.5 can be proved even when d = O(log log 1/µ).

Corollary 8.5. Let c, s, r be functions such that s−1(n), r(n) = 2O(
√
log logn). Assuming

(c, s, r)-UG Conjecture on instancॸ with linear constraints, given a graph on N verticॸ

which hॷ an induced subgraph of relative size 1 − c that ॹ 3-colorable, no polynomial

time algorithm can find an independent set of size poly(s(N)).
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8.1 Reduction

In this section we prove Theorem 8.4. LetG = (U, V,R,E,Π) be a unique games

cover instance with label setR = Fr
3 and the constraints π are full rank linear trans-

formations. We will construct a graph G = (V , E)with V = V × Pr,2d, where d is a

parameter to be fixed later. Let Tr,d be the operator in Definition 5.7. There is an edge

in G between (v, f) and (w, g) if there is a u ∈ U such that (u, v), (u,w) ∈ E and

Tr,d(f ◦ π−1
u,v, g ◦ π−1

u,w) > 0, where πu,v is the full rank linear map that maps a label of

v to label of u.

Lemma 8.6 (Completeness). If G belongs to the YES case of (c, s, r)-UG Conjecture

then G hॷ a induced subgraph of relative size 1− c that ॹ 3-colorable.

Proof. Suppose the label cover instance has a labeling ℓ : V → Fr
3 and a set S ⊆

V, |S| = (1 − c)|V |, such that ℓ satisfies all the edges incident on vertices in S. We will

show thatAv(f) := f(ℓ(v)) for v ∈ V , is a 3-coloring for the induced subgraph of

G on the set S × Pr,2d. For any u ∈ U, v, w ∈ S having edges (u, v), (u,w) ∈ E,

consider the edge ((v, f), (w, g)) ∈ E . The colors given to the end points are f(ℓ(v))

and g(ℓ(w)). Since Tr,d(f ◦ π−1
u,v, g ◦ π−1

u,w) > 0,

g ◦ π−1
u,w = f ◦ π−1

u,v + a(p2 + 1) for some p ∈ Pr
d, a ∈ {1, 2}.

So f(ℓ(v)) = f ◦ π−1
u,v(ℓ(u)) ̸= g ◦ π−1

u,w(ℓ(u)) = g(ℓ(w)).

Lemma 8.7 (Soundness). If G belongs to the NO case of (c, s, r)-UG Conjecture, G hॷ

an independent set of relative size µ and d = O(log 1/µ) then µ ≤ poly(s(n)).

Proof. Let Iv : Pr,2d → {0, 1} be the indicator function of I restricted to vertices in

V corresponding to v ∈ V . Let J = {v ∈ V : Ef∈Pr,2d
Iv(f) ≥ µ/2}. Then we
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have that |J |/|V | ≥ µ/2. For v ∈ J , let L(v) = {x ∈ Fr
3 : Inf≤k

x (Iv) > δ}

where δ = poly(µ), k = O(log 1/µ) are parameters from Theorem 5.5. Note that

|L(v)| ≤ k/δ, since the sum of all degree k influences is at most k.

Claim 8.8. Let v, w ∈ J and (u, v), (u,w) ∈ E. Then there exists a ∈ L(v), b ∈

L(w) such that πu,v(a) = πu,w(b).

Proof. LetA(f) := Iv(f ◦ π−1
u,v),B(g) := Iw(g ◦ π−1

u,w). Since I is an independent set,

if (v, f ◦ π−1
u,v), (w, g ◦ π−1

u,w) ∈ I , then Tr,d(f ◦ π−1
u,v, g ◦ π−1

u,w) = 0, which gives that

⟨A, Tr,dB⟩ = 0 (8.1.1)

From Theorem 5.5, there is some c ∈ Fr
3 such that Inf≤k

c (A), Inf≤k
c (B) > δ, which

gives that π−1
u,v(c) ∈ L(v) and π−1

u,w(c) ∈ L(w).

Now consider the randomized partial labeling L′ toG, where for v ∈ J ,L′(v) is

chosen randomly from L(v) and for u ∈ U , choose a random neighborw ∈ J (if

it exists), a random label a ∈ L(w) and set L(u) = π−1
u,w(a). For any v ∈ J , any

edge (u, v), the probability of it being satisfied by L′ is µ2/k2 = poly(µ), because of

Claim 8.8.

Proof of Theorem 8.4. The size of G denoted byN is at most n3rO(d) . Substituting r =

2O(
√
log logn), d = log 1/µ ≤ O(

√
log log n), we get thatN = poly(n) and hence the

reduction is polynomial time.
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9
Approximate Hypergraph Coloring

In this chapter, we give improved hardness results for the Approximate-k-Hypergraph-

Coloring(c, C), for small constant c, and exponentialy better values ofC than was

previously known.

In Section 9.1, we prove the following theorem (joint work with Guruswami, Håstad,

Harsha & Srinivasan [GHH+14]).

Theorem 9.1 (Approximate-3-Hypergraph-Coloring(3, C)). Assuming NP doॸ

not have n2O(log logn/ log log logn) time algorithms, there ॹ no polynomial time algorithm

which, when given ॷ input a 3-uniform hypergraph H on N verticॸ can distinguish

between the following:

• H ॹ 3 colorable.

• H hॷ no independent set of size N/2O(log logN/ log log logN).

Prior to this result, the best inapproximability result for O(1)-colorable 3-uniform

hypergraphs were as follows: Khot [Kho02b] showed that it is quasi-NP-hard to color

a 3-colorable 3-uniform hypergraphs with (log logN)1/9 colors and Dinur, Regev &

Smyth [DRS05] showed that it is quasi-NP-hard to color a 2-colorable 3-uniform hy-

pergraphs with (log logN)1/3 colors (observe that 2O(log logN/ log log logN) is exponen-

tially larger than (log logN)Ω(1)). For 2-colorable 3-uniform hypergraphs, the result of
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Dinur et al. [DRS05] only rules out colorability by (log logN)Ω(1), while a recent re-

sult due to Khot & Saket [KS14b] shows that it is hard to find a δN -sized independent

set in a givenN -vertex 2-colorable 3-uniform hypergraph assuming the d-to-1 games

conjecture. Our improved inapproximability result is obtained by adapting Khot’s

proof to the low-degree long code using the new noise function over F3. We remark

that this result is not as strong as the next two, since the starting point is a multilayered

smooth label cover instance instead of just label cover, which causes a blow-up in size

and a corresponding deterioration in the parameters.

In Section 9.2, we show that the quadratic outer PCP verifier of Khot & Saket [KS14a]

can in fact be combined with a 8-query test for the quadratic code based on the Gu-

ruswami et al. [GHH+14] inner PCP verifier to obtain a hardness result for 2-colorable

8-uniform hypergraphs. More precisely, we show the following.

Theorem 9.2 (Approximate-8-Hypergraph-Coloring(2, C)). For every constant

ε > 0 there ॹ a reduction from 3-SAT onm variablॸ to a 8-uniform hypergraph G on

n verticॸ such that the following holds:

1. The running time of the reduction ॹ mpoly(logm).

2. YES Case: If the 3-SAT instance ॹ satॹfiable then G ॹ 2-colorable.

3. NO Case: If the 3-SAT instance ॹ unsatॹfiable then G doॸ not have an indepen-

dent set of relative size 2−(logn)
1
20−ε .

In Section 9.3, we use the technique of Guruswami et al. [GHH+14] for reducing the

uniformity from 8 to 4 at the cost of increasing the number of colors from 2 to 4. We

note that a similar trick can be performed in our setting to obtain the following result.

Theorem 9.3 (Approximate-4-Hypergraph-Coloring(4, C)). For every constant

ε > 0 there ॹ a reduction from 3-SAT onm variablॸ to a 4-uniform hypergraph G on

n verticॸ such that the following holds:
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1. The running time of the reduction ॹ mpoly(logm).

2. YES Case: If the 3-SAT instance ॹ satॹfiable then G ॹ 4-colorable.

3. NO Case: If the 3-SAT instance ॹ unsatॹfiable then G doॸ not have an indepen-

dent set of relative size 2−(logn)
1
20−ε .

We remark that the analyses of the inner verifier in Section 9.2 and Section 9.3 are

simpler than the analyses of the corresponding inner verifiers in Guruswami et al. [GHH+14]

and Khot & Saket [KS14a] results. Furthermore, in the language of covering complex-

ity * introduced by Guruswami, Håstad & Sudan [GHS02], (the proof of) Theorem 9.3

demonstrates a Boolean CSP on 4 variables for which it is quasi-NP-hard to distinguish

between covering number of 2 vs. (log n)Ω(1).

9.1 3-Colorable 3-Uniform Hypergraphs

This construction is an adaptation of Khot’s construction [Kho02b] to the low-degree

long code setting. We prove the theorem by a reduction from 3-SAT via the instances of

the multilayered label cover problem obtained in Theorem 6.9. Let r, ℓ, η be parame-

ters that will be determined later and let I(φ) be an instance of the r-repeated ℓ-layered

η-smooth label cover instance with constraint graphG = (V0, . . . , Vℓ−1, {Eij}0≤i<j<ℓ)

obtained from the 3-SAT instance φ. We use the results from the preliminaries with the

field set to F3 = {0, 1, 2}. For every layer i and every vertex v ∈ Vi, let {c1, · · · c(T+ℓ−i)r}

be the clauses corresponding to v where T = ⌈l/η⌉ as in Definition 6.8. We construct

polynomials {p1, · · · p(T+ℓ−i)r} of degree at most 6 over F3 such that pj depends only

on variables in cj with the following properties. Let a ∈ F3
3. If a /∈ {0, 1}3 then

pj(a) ̸= 0. Otherwise pj(a) = 0 iff cj(a) = 1. For a degree parameter d that we will
*The covering number of a CSP is the minimal number of assignments to the vertices so that each

hyperedge is covered by at least one assignment.
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determine later, for each vertex v define the subspace Jv as follows:

Jv :=

{∑
i

qipi : qi ∈ Pmv ,2d−6

}
wheremv := mi = 3(T + ℓ− i)r + ir.

We now define the hypergraphH produced by the reduction. The vertices ofH

— denoted V (H)— are obtained by replacing each v ∈ G by a block Bv ofNv :=

|Pmv ,2d/Jv|. vertices, which we identify with elements of Pmv ,2d/Jv. LetN denote

|V (H)| =
∑

v Nv.

We think of a 3-coloring of V (H) as a map from V (H) to F3. Given a coloringA :

V (H) → 3, we denote byAv : Pmv ,2d/Jv → F3 the restriction ofA to the block Bv.

LetA′
v : Pmv ,2d → 3 denote the lift ofAv as defined in Fact 1.

The (weighted) edge setE(H) ofH is specified implicitly by the following PCP veri-

fier.

3-Color 3-Uniform Test(d):

1. Choose two layers 0 ≤ i < j < ℓ uniformly at random and then choose a

uniformly random edge (u, v) ∈ Eij . Let π denote πuv : Fmu
3 → Fmv

3 .

2. Choose p ∈ Pmu,d, g ∈ Pmu,2d and f ∈ Pmv ,2d independently and uniformly at

random and let g′ := p2 + 1− g − f ◦ π.

3. Accept if and only ifA′
v(f), A

′
u(g), A

′
u(g

′) are not all equal.

The hyperedges in the 3-uniform case straddle both sides of the corresponding edge

(u, v) in the label cover instance. Hence, if constructed from the bipartite label cover,

the corresponding 3-uniform hypergraph will also be bipartite and hence always 2-

colorable irrespective of the label cover instance. Using the multilayered construction

gets around this problem.
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Lemma 9.4 (Completeness). If φ ∈ 3-SAT, then there ॹ proof A : V (H) → F3 which

the verifier accepts with probability 1. In other words, the hypergraph H ॹ 3-colorable.

Proof. Since φ ∈ 3-SAT, Theorem 6.9 tells us that there are labelings Li : Vi →

{0, 1}mi for 0 ≤ i < ℓwhich satisfy all the constraints in I(φ). For ∀i, v ∈ Vi, we set

Av : Pmv ,2d/Jv → F3 such that its liftA′
v = LC2d(Li(v)). This is possible sinceA′

v is

folded over Jv. For any edge (u, v) between layers i, j, with labels Li(u) = a, Lj(v) =

b such that π(a) = b, (A′
v(f), A

′
u(g), A

′
u(g

′)) = (f(b), g(a), g′(a)). The lemma

follows by observing that g′(a) + g(a) + f(b) ̸= 0 always (since p2(a) + 1 ̸= 0).

Lemma 9.5 (Soundness). Let ℓ = 32/δ2. If φ /∈ 3-SAT and H contains a independent

set of size δ|V (H)|, then

δ5/29 ≤ 2−Ω(r) · 3d + η · 3d + exp(−3Ω(d)).

Proof. LetA : V (H) → {0, 1} be the characteristic function of the independent set

of fractional size exactly δ. We have that ∀v,Eg∈Pmv,2d/Jv
[Av(g)] = Eg∈Pmv,2d

[A′
v(g)]

whereA′
v is the lift ofAv. Define

Q(u, v) := E
f,g,p

[
A′

v(f)A
′
u(g)A

′
u(p

2 + 1− f ◦ π − g)
]
.

Observe that Ei,j,u,v [Q(u, v)] = 0 asA corresponds to an independent set. Using

Lemma 3.2, we have the following Fourier expansion ofQ:

Q(u, v) =
∑
α,β,γ

Â′
v(α)Â

′
u(β)Â

′
u(γ) E

f,g,p

[
χα(f)χβ(g)χγ(p

2 + 1− f ◦ π − g)
]
,

(9.1.1)

where the summation is over α ∈ Λmv ,2d, β, γ ∈ Λmu,2d andΛ is as defined in

Lemma 3.2. From the orthonormality of characters, the non-zero terms satisfy β = γ
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and α = π3(β). Substituting in (9.1.1), we get

Q(u, v) =
∑
β

Â′
u(β)

2Â′
v(π3(β))E

p

[
χβ(p

2 + 1)
]

︸ ︷︷ ︸
ξu,v(β)

. (9.1.2)

Claim 9.6. If ℓ = 32/δ2, there exists layers 0 ≤ i < j < ℓ such that E(u,v)∈Eij
[ξu,v(0)] ≥

δ5/29.

Proof. SinceA′ has fractional size δ, there exists a set S of vertices of fractional size δ/2

such that ∀v ∈ S, Â′
v(0) = Ef [A

′
v(f)] ≥ δ/2. Furthermore, there exists δℓ/4 layers,

in which the fractional size of Si := S ∩ Vi in layer Vi is at least δ/4. Since ℓ = 32/δ2,

we obtain from Theorem 6.9 that there exists layers i, j such that the fraction of edges

inEij between Si and Sj is at least δ′ = δ2/64. From above, we have that

E
(u,v)∈Eij

[ξu,v(0)] ≥ δ′ · (δ/2)3 ≥ δ5/29.

For the rest of the proof, layers i, j will be fixed as given by Claim 9.6. To analyze

the expression in (9.1.2), we consider the following breakup ofΛmi,2d \ {0} for every

(u, v) ∈ Eij : far := {β ∈ Λmi,2d : ∆(β, (Pmi,2d)
⊥) ≥ 3d/2}, near1 := {β ∈

Λmi,2d \ far : β ̸= 0 and π3(β) /∈ (Pmv ,2d)
⊥} and near0 := {β ∈ Λmi,2d \ far :

β ̸= 0 and π3(β) ∈ (Pmv ,2d)
⊥}. In Claims 9.7, 9.8 and 9.9, we bound the absolute

values of the sum of Eu,v [ξu,v(β)] for β in far,near0 and near1 respectively.

Claim 9.7.
∣∣∣E(u,v)∈Eij

[∑
β∈far ξu,v(β)

]∣∣∣ ≤ exp(−3Ω(d)).

Claim 9.8.
∣∣∣E(u,v)∈Eij

[∑
β∈near1

ξu,v(β)
]∣∣∣ ≤ 2−Ω(r) · 3d.

Claim 9.9.
∣∣∣E(u,v)∈Eij

[∑
β∈near0

ξu,v(β)
]∣∣∣ ≤ η · 3d.

Combined with Claim 9.6, this exhausts all terms in the expansion (9.1.2). Lemma 9.5

now follows from Claims 9.6–9.9.
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We now proceed to the proofs of Claims 9.7, 9.8 and 9.9.

Proof of Claim 9.7.

∣∣∣∣∣ E
(u,v)∈Eij

[∑
β∈far

ξu,v(β)

]∣∣∣∣∣ ≤ E
(u,v)∈EIj

[∑
β∈far

|Â′
u(β)|2 · |Â′

v(π3(β))| ·
∣∣∣∣Ep [ω⟨β,p2+1⟩

]∣∣∣∣
]
.

The quantity ⟨β, p2⟩ is analyzed in Section 4.3. Let z be a uniformly random F3 ele-

ment. By Lemmas 4.4 and 4.7, we get that the statistical distance between the distri-

butions of ⟨β, p2 + 1⟩ and z is exp(−3Ω(d)). Since the Ez [ω
z] = 0, we have that∣∣∣Ep

[
ω⟨β,p2+1⟩

]∣∣∣ ≤ exp(−3Ω(d)). The claim follows since
∣∣∣Â′

v(α)
∣∣∣ ≤ 1 for any α and∑

β |Â′
u(β)|2 ≤ 1 .

Proof of Claim 9.8. It suffices to bound the following for proving the claim.

E
(u,v)∈Eij

[ ∑
β∈near1

|Â′
u(β)|2 · |Â′

v(π3(β))|

]

≤ E
(u,v)∈Eij

√ ∑
β∈near1

|Â′
u(β)|2 · |Â′

v(π3(β))|2
√ ∑

β∈near1

|Â′
u(β)|2

 [ by Cauchy-Schwarz ]

≤

√√√√ E
(u,v)∈Eij

[ ∑
β∈near1

|Â′
u(β)|2 · |Â′

v(π3(β))|2
]

[ by Jensen’s inequality ].

We bound the above using a Fourier decoding argument. For every vertex v ∈

Vi ∪ Vj , pick a random β according to |Â′
v(β)|2 (note

∑
β |Â′

v(β)|2 ≤ 1) and as-

sign a random labeling to v from the support of β. It is easy to see that the fraction of

edges that are satisfied by this labeling is lower bounded by the LHS of the expression

bellow. We get the inequality using the soundness of the multilayered label cover from

Theorem 6.9.

1

3d
E

(u,v)∈Eij

[ ∑
β∈near1

|Â′
v(π3(β))|2|Â′

u(β)|2
]
≤ 2−Ω(r).
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Proof of Claim 9.9. We bound this sum using the smoothness property of the label

cover instance.

E
(u,v)∈Eij

[ ∑
β∈near0

|Â′
u(β)|2 · |Â′

v(π3(β))|

]
≤ E

u∈Vi

 ∑
β /∈far∪{0}

Pr
v:(u,v)∈Eij

[
π3(β) ∈ (Pmv

2d )
⊥] · |Â′

u(β)|2
 .

We now argue that for every u and β /∈ far ∪ {0}, Pr(u,v)∈Eij

[
π3(β) ∈ (Pmv ,2d)

⊥]
is at most 3d · η. This combined with the fact that

∑
β |Â′

u(β)|2 ≤ 1 yields the claim.

For every u ∈ Vi and β such that 0 ̸= | support(β)| = ∆(β, (Pmu,2d)
⊥) ≤ 3d/2, by

the smoothness property (Theorem 6.9), we have that with probability at least 1− 3dη,

we have

∀a ̸= a′ ∈ support(β), π(a) ̸= π(a′). (9.1.3)

When (9.1.3) holds, we have π3(β) ̸= 0. Now since | support(π3(β))| ≤ | support(β)| ≤

3d/2 and non-zero polynomials in (Pmv ,2d)
⊥ has support at least 3d, we can further

conclude that π3(β) /∈ (Pmv ,2d)
⊥ whenever (9.1.3) holds.

Proof of Theorem 9.1. Given the completeness (Lemma 9.4) and soundness (Lemma 9.5),

we only need to fix parameters. Let n be the size of the 3-SAT instance andN the size

of the hypergraph produced by the reduction.

Let d = C1 log log(1/δ
′), η = (δ′)5/C2 and r = C3 log(1/δ

′) for large enough

constantsC1, C2, C3 and parameter δ′ ∈ (0, 1) to be determined shortly. By Lemma 9.5,

ifH has an independent set of size δN , then δ5/29 ≤ 3d·2−Ω(r)+3d·η+exp(−3Ω(d)) <

(δ′)5/29 for large enoughC1, C2, C3. Hence,H has no independent sets of δ′N .

The hypergraphH produced by the reduction is of sizeN = ℓn(1+1/η)ℓr3((1+1/η)ℓr)O(d)
.

Setting ℓ = C4/(δ
′)2 and log(1/δ′) = Θ(log log n/ log log log n), we get that

N = n2O(log logn/ log log logn) . Since log log n = Θ(log logN), we also get that 1/δ′ =

2Θ(log logN/ log log logN). This completes the proof of Theorem 9.1.
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9.2 2-Colorable 8-Uniform Hypergraphs

In this section we prove Theorem 9.2. Our reduction starts from the label cover in-

stances given by Theorem 7.4. Let (U, V,E,Π) be an instance of the label cover. We

will construct a hypergraph G = (V , E). For v ∈ V , letHv ⊆ Fm×m
2 be the dual

of the subspace of the set matrices that are symmetric and which satisfies the constraint

Cv. The set of vertices V will be the same as V ×
(
Fm×m
2 /Hv

)
. Any 2-coloring of G is

a collection of functionsA′
v : Fm×m

2 /Hv → {0, 1} for v ∈ V . For any such function,

we can uniquely extend it to getAv : Fm×m
2 → {0, 1}which is constant over cosets

ofHv. This method is called folding and it ensures thatAv satisfies the following: if

α ∈ Fm×m
2 is such that Âv(α) is non-zero, then α is symmetric and satisfiesCv.

The set of edges E will be defined by the test mentioned below, which checks whether

a supposed 2-coloringA′
v : Fm×m

2 /Hv → {0, 1} is valid. There is an edge in E

between any set of vertices in V that are queried together by the test. The test will be

querying the extended functionsAv at matrices in Fm×m
2 instead ofA′

v. So a query to

Av atX ∈ Fm×m
2 corresponds to a query toA′

v at the coset ofHv that containsX .

2-Colorable 8-Uniform Test T2,8:

1. Choose u ∈ U uniformly at random and v, w ∈ V uniformly and inde-

pendently at random from the neighbors of u. Let π, σ : Fm×m
2 → Fr×r

2

be the projections corresponding to the edges (u, v), (u,w) respectively. Uni-

formly and independently at random chooseX1, X2, Y1, Y2 ∈ Fm×m
2 and

x, y, z, x′, y′, z′ ∈ Fm
2 and F ∈ Fr×r

2 . Let em ∈ Fm
2 be the vector with only

themth entry 1 and the rest is 0.
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2. Accept if and only if the following 8 values are not all equal :

Av(X1) Av(X3) whereX3 := X1 + x⊗ y + F ◦ π

Av(X2) Av(X4) whereX4 := X2 + (x+ em)⊗ z + F ◦ π

Aw(Y1) Aw(Y3) where Y3 := Y1 + x′ ⊗ y′ + F ◦ σ + em ⊗ em

Aw(Y2) Aw(Y4) where Y4 := Y2 + (x′ + em)⊗ z′ + F ◦ σ + em ⊗ em

9.2.1 YES Case

Let yv ⊗ yv for v ∈ V and xu ⊗ xu for u ∈ U be a perfectly satisfying labeling of

the label cover instance. That is, for every (u, v) ∈ E, πu,v(yv ⊗ yv) = xu ⊗ xu.

Such a labeling is guaranteed by the YES instance of label cover, with the additional

property that themth coordinate of yv is 1. Consider the following 2-coloring of G: for

each v ∈ V ,Av(X) := ⟨X, yv ⊗ yv⟩. Note that such a function is constant over cosets

ofHv. Let

x1 := ⟨X1, yv ⊗ yv⟩ x2 := ⟨X2, yv ⊗ yv⟩

y1 := ⟨Y1, yw ⊗ yw⟩ y2 := ⟨Y2, yw ⊗ yw⟩

and f := ⟨F, xu ⊗ xu⟩. Note that ⟨F ◦ πu,v, yv ⊗ yv⟩ = ⟨F, πu,v(yv ⊗ yv)⟩ =

⟨F, xu ⊗ xu⟩ , and ⟨em ⊗ em, yv ⊗ yv⟩ = ⟨em, yv⟩ = 1. Using these, the assignments

to the 8 query locations are:

x1 x1 + ⟨yv, x⟩⟨yv, y⟩+ f

x2 x2 + (⟨yv, x⟩+ 1) ⟨yv, z⟩+ f

y1 y1 + ⟨yw, x′⟩⟨yw, y′⟩+ f + 1

y2 y2 + (⟨yw, x′⟩+ 1) ⟨yw, z′⟩+ f + 1
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It is easy to see at least one of the 4 rows are always not equal. HenceA is a valid 2-

coloring of G.

9.2.2 NO Case

Suppose the reduction was applied to a NO instance of label cover. Let k and δ be the

parameters specified by Theorem 7.4.

Lemma 9.10. If there ॹ an independent set in G of relative size s then

s8 ≤ δ +
1

2k/2+1
.

Proof. The proof of the lemma is similar to Section 8.2 in Khot & Saket [KS14a]. Con-

sider any setA ⊆ V of fractional size s. For every v ∈ V , letAv : Fm×m
2 → {0, 1} be

the indicator function that is extended such that it is constant over cosets ofHv. A is an

independent set if and only if

Θ := E
u,v,w

E
Xi,Yi∈T2,8

4∏
i=1

Av(Xi)Aw(Yi) = 0. (9.2.1)

Now we do the Fourier expansion and take expectations overX1, X2, Y1, Y2 to obtain

the following:

Θ = E
u,v,w

∑
α1,α2
β1,β2

∈Fm×m
2

E
F,x,x′

[
Âv(α1)

2 E
y
[χα1(x⊗ y)]χα1(F ◦ π)

Âv(α2)
2 E

z
[χα2((x+ em)⊗ z)]χα2(F ◦ π)

Âw(β1)
2 E
y′
[χβ1(x

′ ⊗ y′)]χβ1(F ◦ σ)χβ1(em ⊗ em)

Âw(β2)
2 E
z′
[χβ2((x

′ + em)⊗ z′)]χβ2(F ◦ σ)χβ2(em ⊗ em)

]
︸ ︷︷ ︸

=:Termu,v,w(α1,α2,β1,β2)

93



Note that since F ∈ Fr×r
2 is chosen uniformly at random,

E
F
χα1(F ◦ π)χα2(F ◦ π)χβ1(F ◦ σ)χβ2(F ◦ σ) = E

F
(−1)⟨π(α1+α2),F ⟩+⟨σ(β1+β2),F ⟩

is zero unless π(α1 + α2) = σ(β1 + β2). Let ν(α) := (−1)⟨α,em⊗em⟩. Now taking

expectations over x, y, z, x′, y′, z′, and noting that ⟨α, x⊗ y⟩ = ⟨αx, y⟩, we obtain

Termu,v,w(α1, α2, β1, β2) = (−1)ν(β1+β2)Âv(α1)
2Âv(α2)

2Âw(β1)
2Âw(β2)

2

Pr
x
[α1x = 0 ∧ α2x = α2em] ·

Pr
x′

[β1x
′ = 0 ∧ β2x

′ = β2em]

(9.2.2)

when π(α1 + α2) = σ(β1 + β2) and 0 otherwise. Define:

Θ0 = E
u,v,w

∑
rank(α1+α2),rank(β1+β2)≤k

π(α1+α2)=σ(β1+β2)
ν(β1+β2)=0

Termu,v,w(α1, α2, β1, β2) (9.2.3)

Θ1 = E
u,v,w

∑
rank(α1+α2),rank(β1+β2)≤k

π(α1+α2)=σ(β1+β2)
ν(β1+β2)=1

Termu,v,w(α1, α2, β1, β2) (9.2.4)

Θ2 = E
u,v,w

∑
max{rank(α1+α2),rank(β1+β2)}>k

π(α1+α2)=σ(β1+β2)

Termu,v,w(α1, α2, β1, β2) (9.2.5)

We lower boundΘ0 by s8, upper bound |Θ1| by δ and |Θ2| by 1/2k/2+1 below. Along

with (9.2.1), this will prove Lemma 9.10.

Lower Bound onΘ0: Note that all terms inΘ0 are positive. Now consider the

term corresponding to α1 = α2 = β1 = β2 = 0.

E
u,v,w

Â4
v(0)Â

4
w(0) = E

u

(
E
v
Â4

v(0)
)2

≥
(
E
uv
Âv(0)

)8
≥ s8. (9.2.6)
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Upper Bound on |Θ1|: We can upper bound |Θ1| by

E
u,v,w

∑
rank(α1+α2),rank(β1+β2)≤k,

π(α1+α2)=σ(β1+β2),
ν(β1+β2)=1

Â2
v(α1)Â

2
v(α2)Â

2
w(β1)Â

2
w(β2). (9.2.7)

Consider the following strategy for labeling vertices u ∈ U and v ∈ V . For u ∈ U ,

pick a random neighbor v, choose (α1, α2)with probability Â2
v(α1)Â

2
v(α2) and set its

label to π(α1 + α2). Forw ∈ V , choose (β1, β2)with probability Â2
w(β1)Â

2
w(β2) and

set its label to β1 + β2. SinceAw is folded, both β1 and β2 are symmetric and satisfies

Cv. Since these constraints are homogeneous, β1 + β2 is also symmetric and satisfies

Cv. Also π maps symmetric matrices to symmetric matrices. Note that (9.2.7) gives

the probability that a random edge (u,w) of the label cover is satisfied by this labeling.

Hence (9.2.7) and |Θ1| are upper bounded by δ.

Upper Bound on |Θ2|: Note that if the rank(α) > k, for any fixed b, Prx[αx =

b] ≤ 1/2k+1. All terms inΘ2 hasmax{rank(α1), rank(α2), rank(β1), rank(β2)} >

k/2. From (9.2.2) we have that, for any fixed choice of u, v, w each term inΘ2 has ab-

solute value at most 1/2k/2+1. SinceA,B are {0, 1} valued functions, sum of their

squared coefficients is upper bounded by 1 (i.e. Parseval’s inequality). Thus |Θ2| ≤

1/2k/2+1.

Proof of Theorem 9.2. We already saw in Section 9.2.1 that an YES instance of label

cover is mapped to a 2-colorable hypergraph. Since k = (logN)1/8−2ε and δ =

2−(logN)1/4−2ε , s ≤ 2−(logN)1/8−3ε
.Also the number of vertices in G,

n ≤ N2m
2 ≤ N · 2(logN)10/4+2ε

.
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From Lemma 9.10 and above, a NO instance of label cover is mapped to a hypergraph G

that has no independent set of relative size 2−(logn)1/20−4ε .

9.3 4-Colorable 4-Uniform Hypergraphs

In this section, we modify the reduction in the previous section, so that the unifor-

mity of the hypergraph produced is decreased to 4 at the cost of increasing the number

of colors required in the YES case to 4. This method was proposed by Guruswami et

al. [GHH+14]. The hypergraph G = (V , E) constructed will have vertices

V = V ×
(
Fm×m
2 × Fm×m

2 /Hv ×Hv

)
.

Any 4-coloring of G can be expressed as a collection of functions

A′
v :
(
Fm×m
2 × Fm×m

2 /Hv ×Hv

)
→ {0, 1}2, for v ∈ V.

We can uniquely extend such functions to getAv : Fm×m
2 × Fm×m

2 → {0, 1}2

which is constant over cosets ofHv ×Hv. This ensures thatA satisfies the following: if

α = (α1, α2) ∈ Fm×m
2 × Fm×m

2 is such that Â(α) is non-zero, then α1, α2 are both

symmetric and satisfiesCv. The set of edges E will be defined by the test mentioned

below.

4-Colorable 4-Uniform Test:

1. Sample v, w and {Xi, Yi}4i=1 from the distribution T2,8 as described by the test

in the previous section.
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2. Accept if and only if the following 4 values are not all equal :

Av(X1, X2) Av(X3, X4) Aw(Y1, Y2) Aw(Y3, Y4)

9.3.1 YES Case

Given a perfectly satisfying labeling yv ⊗ yv for v ∈ V and xu ⊗ xu for u ∈ U , we

define the following 4-coloring for G: for each v ∈ V ,

Av(X1, X2) := (⟨X1, yv ⊗ yv⟩, ⟨X2, yv ⊗ yv⟩) .

Note that such a function is constant over cosets ofHv. Using the arguments from

Section 9.2.1, it is easy to see thatA is a valid 4-coloring of G.

9.3.2 NO Case

The analysis of the NO case is similar to Section 9.2.2.
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10
Covering CSPs

In this chapter, we describe our hardness results for Covering CSPs (joint work with

Bhangale & Harsha [BHV15]).

The notion of covering complexitywas introduced by Guruswami, Håstad & Su-

dan [GHS02] and more formally by Dinur & Kol [DK13] to obtain a better under-

standing of the complexity of hypergraph coloring problems. Let P be a predicate and

Φ an instance of a constraint satisfaction problem (CSP) over n variables, where each

constraint inΦ is a constraint of type P over the n variables and their negations. We

will refer to such CSPs as P -CSPs. The covering number ofΦ, denoted by ν(Φ), is the

smallest number of assignments to the variables such that each constraint ofΦ is satis-

fied by at least one of the assignments, in which case we say that the set of assignments

covers the instanceΦ. If c assignments cover the instanceΦ, we say thatΦ is c-coverable

or equivalently that the set of assignments form a c-covering forΦ. The covering num-

ber is a generalization of the notion of chromatic number (to be more precise, the log-

arithm of the the chromatic number) to all predicates in the following sense. Suppose

P is the not-all-equal predicate NAE and the instanceΦ has no negations in any of its

constraints, then the covering number ν(Φ) is exactly ⌈logχ(GΦ)⌉whereGΦ is the

underlying constraint graph of the instanceΦ.

Cover-P refers to the problem of finding the covering number of a given P -CSP
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instance. Finding the exact covering number for most interesting predicates P is NP-

hard. We therefore study the problem of approximating the covering number. In par-

ticular, we would like to study the complexity of the following problem, denoted by

Covering-P -CSP(c, s), for some 1 ≤ c < s ∈ N: “given a c-coverable P -CSP

instanceΦ, find an s-covering forΦ”. Similar problems have been studied for the Max-

CSP setting: “for 0 < s < c ≤ 1, “given a c-satisfiable P -CSP instanceΦ, find an

s-satisfying assignment forΦ”. Max-CSPs and Cover-CSPs, as observed by Dinur &

Kol [DK13], are very different problems. For instance, if P is an odd predicate, i.e, if for

every assignment x, either x or its negation x + 1 satisfies P , then any P -CSP instance

Φ has a trivial two covering, any assignment and its negation. Thus, 3-LIN and 3-CNF*,

being odd predicates, are easy to cover though they are hard predicates in the Max-CSP

setting. The main result of Dinur & Kol is that the 4-LIN predicate, in contrast to the

above, is hard to cover: for every constant t ≥ 2, Covering-4-LIN-CSP(2, t) is NP-

hard. In fact, their arguments show that Covering-4-LIN-CSP(2,Ω(log log log n)) is

quasi-NP-hard.

Having observed that odd predicate based CSPs are easy to cover, Dinur and Kol

proceeded to ask the question “are all non-odd-predicate CSPs hard to cover?”. In a

partial answer to this question, they showed that assuming a covering variant of the

unique games conjecture Covering-UGC(c) (Conjecture 10.8), if a predicate P is not

odd and there is a balanced pairwise independent distribution on its support, then for

all constants k, Covering-P -CSP(2c, k) is NP-hard (here, c is a fixed constant that

depends on the covering variant of the unique games conjecture Covering-UGC(c)).

Our first result states that assuming the same covering variant of unique games con-

jecture Covering-UGC(c) of Dinur & Kol [DK13], one can in fact show the covering

hardness of all non-odd predicates P over any constant-sized alphabet [q]. The notion
*3-LIN : {0, 1}3 → {0, 1} refers to the 3-bit predicate defined by 3-LIN(x1, x2, x3) := x1 ⊕ x2 ⊕

x3 while 3-CNF : {0, 1}3 → {0, 1} refers to the 3-bit predicate defined by 3-CNF(x1, x2, x3) := x1 ∨
x2 ∨ x3
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of odd predicate can be extended to any alphabet in the following natural way: a pred-

icate P ⊆ [q]k is odd if for all assignments x ∈ [q]k, there exists a ∈ [q] such that the

assignment x+ a satisfies P .

Theorem 10.1 (Covering hardness of non-odd predicates). Assuming Covering-

UGC(c), for any constant-sized alphabet [q], any constant k ∈ N and any non-odd

predicate P ⊆ [q]k, for all constants t ∈ N, the Covering-P -CSP(2cq, t) problem ॹ

NP-hard.

Since odd predicates P ⊆ [q]k are trivially coverable with q assignments, the above

theorem, gives a full characterization of hard-to-cover predicatॸ over any constant sized

alphabet (modulo the covering variant of the unique games conjecture): a predicate is

hard to cover iff it is not odd.

We then ask if we can prove similar covering hardness results under more standard

complexity assumptions (such as NP ̸=P or the exponential-time hypothesis (ETH)).

Though we are not able to prove that every non-odd predicate is hard under these as-

sumptions, we give sufficient conditions on the predicate P for the corresponding ap-

proximate covering problem to be quasi-NP-hard. Recall that 2k-LIN ⊆ {0, 1}2k is

the predicate corresponding to the set of odd parity strings in {0, 1}2k.

Theorem 10.2 (NP-hardness of Covering). Let k ≥ 2. Let P ⊆ 2k-LIN be any 2k-bit

predicate such there exists distributions P0,P1 supported on {0, 1}k with the following

propertiॸ:

1. the marginals of P0 and P1 on all k coordinatॸ ॹ uniform,

2. every a ∈ support(P0) hॷ even parity and every b ∈ support(P1) hॷ odd

parity and furthermore, both a · b, b · a ∈ P (where · stands for concatenation of

strings).
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Then, unless NP ⊆ DTIME(2poly logn), for all ε ∈ (0, 1/2], Covering-P -CSP(2,

Ω(log log n)) ॹ not solvable in polynomial time.

Furthermore, the YES and NO instancॸ of Covering-P -CSP(2,Ω(log log n))

satisfy the following propertiॸ.

• YES Case : There are 2 assignments such that each of them covers 1 − ε fraction

of the constraints and they together cover the instance.

• NO Case : Even the 2k-LIN-CSP instance with the same constraint graph ॷ the

given instance ॹ not Ω(log log n)-coverable.

The furthermore clause in the soundness guarantee is in fact a strengthening for the

following reason: if two predicates P,Q satisfy P ⊆ Q andΦ is a c-coverable P -CSP

instance, then theQ-CSP instanceΦP→Q obtained by taking the constraint graph ofΦ

and replacing each P constraint with the weakerQ constraint, is also c-coverable.

The following is a simple corollary of the above theorem.

Corollary 10.3. Let k ≥ 2 be even, x, y ∈ {0, 1}k be distinct strings having even and

odd parity respectively and x, y denote the complements of x and y respectively. For any

predicate P satisfying

2k-LIN ⊇ P ⊇ {x · y, x · y, x · y, x · y, y · x, y · x, y · x, y · x},

unless NP ⊆ DTIME(2poly logn), the problem Covering-P -CSP(2,Ω(log log n)) ॹ

not solvable in polynomial time.

This corollary implies the covering hardness of 4-LIN predicate proved by Dinur &

Kol [DK13] by setting x := 00 and y := 01. With respect to the covering hardness of

4-LIN, we note that we can considerably simplify the proof of Dinur & Kol and in fact
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obtain a even stronger soundness guarantee (see Theorem below). The stronger sound-

ness guarantee in the theorem below states that there are no large (≥ 1/poly log n frac-

tional sized) independent sets in the constraint graph and hence, even the 4-NAE-CSP

instance† with the same constraint graph as the given instance is not coverable using

Ω(log log n) assignments. Both the Dinur-Kol result and the above corollary only

guarantee (in the soundness case) that the 4-LIN-CSP instance is not coverable.

Theorem 10.4 (Hardness of Covering 4-LIN). Assuming that NP ̸⊆ DTIME(2poly logn),

for all ε ∈ (0, 1), there doॸ not exist a polynomial time algorithm that can distinguish

between 4-LIN-CSP instancॸ of the following two typॸ:

• YES Case : There are 2 assignments such that each of them covers 1 − ε fraction

of the constraints, and they together cover the entire instance.

• NO Case : The largest independent set in the constraint graph of the instance ॹ of

fractional size at most 1/poly log n.

10.1 Preliminaries

We will denote the set {0, 1, · · · q − 1} by [q]. For a ∈ [q], ā ∈ [q]k is the element with

a in all the k coordinates (where k and q will be implicit from the context).

Definition 10.5 (P -CSP). For a predicate P ⊆ [q]k, an instance of P -CSP ॹ given by

a (hyper)graph G = (V,E), referred to ॷ the constraint graph, and a literals function

L : E → [q]k, where V ॹ a set of variablॸ and E ⊆ V k ॹ a set of constraints. An

assignment f : V → [q] ॹ said to cover a constraint e = (v1, · · · , vk) ∈ E, if

(f(v1), · · · , f(vk)) + L(e) ∈ P , where addition ॹ coordinate-wise modulo q. A set of

assignments F = {f1, · · · , fc} ॹ said to cover (G,L), if for every e ∈ E, there ॹ some
†The k-NAE predicate over k bits is given by k-NAE = {0, 1}k \ {0, 1}.
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fi ∈ F that covers e and F ॹ said to be a c-covering for G. G ॹ said to be c-coverable

if there ॹ a c-covering for G. If L ॹ not specified then it ॹ the constant function which

maps E to 0̄.

Definition 10.6 (Covering-P -CSP(c, s)). For P ⊆ [q]k and c, s ∈ N, the Cover-

ing-P -CSP(c, s) problem ॹ, given a c-coverable instance (G = (V,E), L) of P -CSP,

find an s-covering.

Definition 10.7 (Odd). A predicate P ⊆ [q]k ॹ odd if ∀x ∈ [q]k, ∃a ∈ [q], x+ ā ∈ P ,

where addition ॹ coordinate-wise modulo q.

For odd predicates the covering problem is trivially solvable, since any CSP instance

on such a predicate is q-coverable by the q translates of any assignment, i.e., {x + ā |

a ∈ [q]} is a q-covering for any assignment x ∈ [q]k.

Our characterization of hardness of covering CSPs is based on the following conjec-

ture due to Dinur & Kol [DK13].

Conjecture 10.8 (Covering-UGC(c)). There exists c ∈ N such that for every suffi-

ciently small δ > 0 there exists L ∈ N such that the following holds. Given a an instance

G = (U, V,E, [L], [L], {πe}e∈E) of Unique-Game it ॹ NP-hard to distinguish

between the following two casॸ:

• YES case: There exist c assignments such that for every vertex u ∈ U , at least one

of the assignments satॹfiॸ all the edgॸ touching u.

• NO case: Every assignment satॹfiॸ at most δ fraction of the edge constraints.

10.2 A Characterization of Hard-to-cover CSPs

In this section, we prove the following theorem, which in turn implies Theorem 10.1

(see below for proof).
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Theorem 10.9. Let [q] be any constant sized alphabet and k ≥ 2 and for b ∈ [q],

b̄ := (b, · · · , b) ∈ [q]k . Recall that NAE := [q]k \ {b̄ | b ∈ [q]}. Let P ⊆ [q]k

be a predicate such that there exists a ∈ NAE and NAE ⊃ P ⊇ {a + b̄ | b ∈ [q]}.

Assuming Covering-UGC(c), for every sufficiently small constant δ > 0 it ॹ NP-hard

to distinguish between P -CSP instancॸ G = (V , E) of the following two casॸ:

• YES Case : G ॹ 2c-coverable.

• NO Case : G doॸ not have an independent set of fractional size δ.

Proof of Theorem 10.1. LetQ be an arbitrary non odd predicate, i.e,Q ⊆ [q]k \ {h+ b̄ |

b ∈ [q]} for some h ∈ [q]k. Consider the predicateQ′ ⊆ [q]k defined as

Q′ := {x ∈ [q]k : ∃y ∈ Q, ∀i ∈ [k], xi = yi − h}.

Observe thatQ′ ⊆ NAE. Given anyQ′-CSP instanceΦwith literals function L(e) =

0, consider theQ-CSP instanceΦQ′→Q with literals functionM given byM(e) :=

h, ∀e. It has the same constraint graph asΦ. Clearly,Φ is c-coverable iffΦQ′→Q is c-

coverable. Thus, it suffices to prove the result for any predicateQ′ ⊆ NAE with literals

function L(e) = 0‡. We will consider two cases, both of which will follow from Theo-

rem 10.9.

Suppose the predicateQ′ satisfiesQ′ ⊇ {a + b̄ | b ∈ [q]} for some a ∈ [q]k.

Then this predicateQ′ satisfies the hypothesis of Theorem 10.9 and the theorem fol-

lows if we show that the soundness guarantee of Theorem 10.9 implies that in Theo-

rem 10.1. Any instance in the NO case of Theorem 10.9, is not t := logq(1/δ)-coverable

even on the NAE-CSP instance with the same constraint graph. This is because any

t-covering for the NAE-CSP instance gives a coloring of the constraint graph using qt

‡This observation [DK13] that the cover-Q problem for any non-odd predicateQ is equivalent to the
cover-Q′ problem whereQ′ ⊆ NAE shows the centrality of the NAE predicate in understanding the
covering complexity of any non-odd predicate.
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colors, by choosing the color of every variable to be a string of length t and having the

corresponding assignments in each position in [t]. Hence theQ′-CSP instance is also

not t-coverable.

SupposeQ′ ̸⊇ {a + b̄ | b ∈ [q]} for all a ∈ [q]k. Then consider the predicate

P = {a + b̄ | a ∈ Q′, b ∈ [q]} ⊆ NAE. Notice that P satisfies the conditions

of Theorem 10.9 and if the P -CSP instance is t-coverable then theQ′-CSP instance is

qt-coverable. Hence an YES instance of Theorem 10.9 maps to a 2cq-coverableQ-CSP

instance and NO instance maps to an instance with covering number at least logq(1/δ).

We now prove Theorem 10.9 by giving a reduction from an instanceG = (U, V,E, [L], [L],

{πe}e∈E) of Unique-Game as in Definition 6.5, to an instance G = (V, E) of a P -

CSP for any predicate P that satisfies the conditions mentioned. As stated in the intro-

duction, we adapt the long-code test of Bansal & Khot [BK10] for proving the hardness

of finding independent sets in almost k-partite k-uniform hypergraphs to our setting.

The set of variables V is V × [q]2L. Any assignment to V is given by a set of functions

fv : [q]2L → [q], for each v ∈ V . The set of constraints E is given by the following test

which checks whether fv’s are long codes of a good labeling to V . There is a constraint

corresponding to all the variables that are queried together by the test.

Long Code Test T1:

1. Choose u ∈ U uniformly and k neighborsw1, . . . , wk ∈ V of u uniformly and

independently at random.

2. Choose a random matrixX of dimension k × 2L as follows. LetX i denote the

i
th column ofX . Independently for each i ∈ [L], choose (X i, X i+L) uniformly
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at random from the set

S :=
{
(y, y′) ∈ [q]k × [q]k | y ∈ {a+ b̄ | b ∈ [q]} ∨ y′ ∈ {a+ b̄ | b ∈ [q]}

}
.

(10.2.1)

3. Let x1, · · · , xk be the rows of matrixX . Accept iff

(fw1(x1 ◦ πuw1), fw2(x2 ◦ πuw2), · · · , fwk
(xk ◦ πuwk

)) ∈ P,

where x◦π is the string defined as (x◦π)(i) := xπ(i) for i ∈ [L] and (x◦π)(i) :=

xπ(i−L)+L otherwise.

Lemma 10.10 (Completeness). If the Unique-Game instance G ॹ c-coverable then the

P -CSP instance G ॹ 2c-coverable.

Proof. Let ℓ1, . . . , ℓc : U ∪ V → [L] be a c-covering forG as described in Defini-

tion 6.5. We will show that the 2c assignments given by f i
v(x) := xℓi(v), g

i
v(x) :=

xℓi(v)+L, i = 1, . . . , c form a 2c-covering of G. Consider any u ∈ U and let ℓi be the

labeling that covers all the edges incident on u. For any (u,wj)j∈{1,··· ,k} ∈ E andX

chosen by the long code test T1, the vector (f i
w1
(x1 ◦ πuw1), · · · , f i

wk
(xk ◦ πuwk

))

gives the ℓi(u)th column ofX . Similarly the above expression corresponding to gi gives

the (ℓi(u) + L)th column of the matrixX . Since, for all i ∈ [L], either ith column

or (i + L)th column ofX contains element from {a + b̄ | b ∈ [q]} ⊆ P , either

(f i
w1
(x1◦πuw1), · · · , f i

wk
(xk ◦πuwk

)) ∈ P or (giw1
(x1◦πuw1), · · · , giwk

(xk ◦πuwk
)) ∈

P . Hence the set of 2c assignments {f i
v, g

i
v}i∈{1,··· ,c} covers all constraints in G.

To prove soundness, we show that the set S, as defined in Equation (10.2.1), is con-

nected, so that Theorem 2.2 is applicable.
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Claim 10.11. Consider S ⊆ [q]k × [q]k ॷ a subset of ([q]2)k ॷ follows: the element

(y, y′) ∈ S ॹ mapped to the element ((y1, y′1), · · · , (yk, y′k)) ∈ ([q]2)k. Let Ω = [q]2.

The set S ⊂ Ωk ॹ connected (ॷ in Definition 2.1).

Proof. Consider any x := (x1, x2), y := (y1, y2) ∈ S ⊂ [q]k × [q]k. Suppose

both x1, y1 ∈ {a + b̄ | b ∈ [q]}, then it is easy to come up with a sequence of strings

belonging to S, starting with x and ending with y such that consecutive strings differ

in at most 1 coordinate,. Now suppose x1, y2 ∈ {a + b̄ | b ∈ [q]}. First we come

up with a sequence from (x1, x2) to (x1, y2), and then another sequence for (x1, y2) to

(y1, y2). This can be done since in the definition of S, we are only constraining one of

x1 or x2 to be in {a+ b̄ : b ∈ [q]}.

Lemma 10.12 (Soundness). For every constant δ > 0, there exists a constant s such that,

if G ॹ at most s-satॹfiable then G doॸ not have an independent set of size δ.

Proof. Let I ⊆ V be an independent set of fractional size δ in the constraint graph.

For every variable v ∈ V , let fv : [q]2L → {0, 1} be the indicator function of the

independent set restricted to the vertices that correspond to v. For a vertex u ∈ U , let

N(u) ⊆ V be the set of neighbors of u and define fu(x) := Ew∈N(u)[fw(x ◦ πuw)].

Since I is an independent set, we have

0 = E
u,wi,...,wk

E
X∼T1

[
k∏

i=1

fwi
(xi ◦ πuwi

)

]
= E

u
E

X∼T1

[
k∏

i=1

fu(xi)

]
. (10.2.2)

Since the bipartite graph (U, V,E) is left regular and |I| ≥ δ|V |, we haveEu,x[fu(x)] ≥

δ. By an averaging argument, for at least δ
2
fraction of the vertices u ∈ U , Ex[fu(x)] ≥

δ
2
. Call a vertex u ∈ U good if it satisfies this property. A string x ∈ [q]2L can be

thought as an element from ([q]2)L by grouping the pair of coordinates xi, xi+L. Let

x ∈ ([q]2)L denotes this grouping of x, i.e., jth coordinate of x is (xj, xj+L) ∈ [q]2.

With this grouping, the function fu can be viewed as fu : ([q]2)L → {0, 1}. From
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Equation (10.2.2), we have that for any u ∈ U ,

E
X∼T1

[
k∏

i=1

fu(xi)

]
= 0.

By Claim 10.11, for all j ∈ [L] the tuple ((x1)j, . . . , (xk)j) (corresponding to columns

(Xj,Xj+L) ofX) is sampled from a distribution whose support is a connected set.

Hence for a good vertex u ∈ U , we can apply Theorem 2.2 with ε = Γ(δ/2)/2 to get

that there exists j ∈ [L], d ∈ N, τ > 0 such that Inf≤d
j (fu) > τ . We will use this fact

to give a randomized labeling forG. Labels for verticesw ∈ V, u ∈ U will be chosen

uniformly and independently from the sets

Label(w) :=
{
i ∈ [L] | Inf≤d

i (fw) ≥
τ

2

}
,Label(u) :=

{
i ∈ [L] | Inf≤d

i (fu) ≥ τ
}
.

By the above argument (using Theorem 2.2), we have that for a good vertex u, Label(u) ̸=

∅. Furthermore, since the sum of degree d influences is at most d, the above sets have

size at most 2d/τ . Now, for any j ∈ Label(u), we have

τ < Inf≤d
j [fu] =

∑
S:j∈S,|S|≤d

∥fu,S∥2 =
∑

S:j∈S,|S|≤d

∥∥∥∥ E
w∈N(u)

[
fw,π−1

uw(S)

]∥∥∥∥2 (By Definition.)

≤
∑

S:j∈S,|S|≤d

E
w∈N(u)

∥∥∥fw,π−1
uw(S)

∥∥∥2 = E
w∈N(u)

Inf≤d

π−1
uw(j)

[fw]. (By Convexity of square.)

Hence, by another averaging argument, there exists at least τ
2
fraction of neighborsw of

u such that Inf≤d

π−1
uw(j)

(fw) ≥ τ
2
and hence π−1

uw(j) ∈ Label(w). Therefore, for a good

vertex u ∈ U , at least τ
2

τ
2d

fraction of edges incident on u are satisfied in expectation.

Also, at least δ
2
fraction of vertices in U are good, it follows that the expected fraction

of edges that are satisfied by this random labeling is at least δ
2
τ
2

τ
2d

. Choosing s < δ
2
τ
2

τ
2d

completes the proof.
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10.3 Some NP-hardness Results

In this section, we prove Theorem 10.2. We give a reduction from an instance of a LC,

G = (U, V,E, [L], [R], {πe}e∈E) as in Definition 6.5, to a P -CSP instance G = (V , E)

for any predicate P that satisfies the conditions mentioned in Theorem 10.2. The re-

duction and proof is similar to that of Dinur & Kol [DK13]. The main difference is

that they used a test and invariance principle very specific to the 4-LIN predicate, while

we show that a similar analysis can be performed under milder conditions on the test

distribution.

We assume thatR = dL and ∀i ∈ [L], e ∈ E, |π−1
e (i)| = d. This is done just for

simplifying the notation and the proof does not depend upon it. The set of variables V

is V × {0, 1}2R. Any assignment to V is given by a set of functions fv : {0, 1}2R →

{0, 1}, for each v ∈ V . The set of constraints E is given by the following test which

checks whether fv’s are long codes of a good labeling to V .

Long Code Test T2:

1. Choose u ∈ U uniformly and v, w ∈ V neighbors of u uniformly and indepen-

dently at random. For i ∈ [L], letBuv(i) := π−1
uv (i), B

′
uv(i) := R + π−1

uv (i) and

similarly forw.

2. Choose matricesX,Y of dimension k × 2dL as follows. For S ⊆ [2dL], we

denote byX|S the submatrix ofX restricted to the columns S. Independently

for each i ∈ [L], choose c1 ∈ {0, 1} uniformly and

(a) if c1 = 0, choose
(
X|Buv(i)∪B′

uv(i), Y |Buw(i)∪B′
uw(i)

)
fromP⊗2d

0 ⊗P⊗2d
1 ,

(b) if c1 = 1, choose
(
X|Buv(i)∪B′

uv(i), Y |Buw(i)∪B′
uw(i)

)
fromP⊗2d

1 ⊗P⊗2d
0 .
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3. PerturbX, Y as follows. Independently for each i ∈ [L], choose c2 ∈ {∗, 0, 1}

as follows: Pr[c2 = ∗] = 1 − 2ε, and Pr[c2 = 1] = Pr[c2 = 0] = ε. Perturb

the ith matrix block
(
X|Buv(i)∪B′

uv(i), Y |Buw(i)∪B′
uw(i)

)
as follows:

(a) if c2 = ∗, leave the matrix block
(
X|Buv(i)∪B′

uv(i), Y |Buw(i)∪B′
uw(i)

)
unper-

turbed,

(b) if c2 = 0, choose
(
X|B′

uv(i), Y |B′
uw(i)

)
uniformly from {0, 1}k×d ×

{0, 1}k×d,

(c) if c2 = 1, choose
(
X|Buv(i), Y |Buw(i)

)
uniformly from {0, 1}k×d ×

{0, 1}k×d.

4. Let x1, · · · , xk and y1, · · · , yk be the rows of the matricesX and Y respectively.

Accept if

(fv(x1), · · · , fv(xk), fw(y1), · · · , fw(yk)) ∈ P.

Lemma 10.13 (Completeness). If G ॹ an YES instance of LC, then there exists f, g such

that each of them covers 1− ε fraction of E and they together cover all of E .

Proof. Let ℓ : U ∪ V → [L] ∪ [R] be a labeling toG that satisfies all the constraints.

Consider the assignments fv(x) := xℓ(v) and gv(x) := xR+ℓ(v) for each v ∈ V . First

consider the assignment f . For any (u, v), (u,w) ∈ E and x1, · · · , xk, y1, · · · , yk

chosen by the long code test T2, (fv(x1), · · · , fv(xk)), (fw(y1), · · · , fw(yk)) gives the

ℓ(v)th and ℓ(w)th column of the matricesX and Y respectively. Since πuv(ℓ(v)) =

πuw(ℓ(w)), they are jointly distributed either according toP0 ⊗ P1 orP1 ⊗ P0 after

Step 2. The probability that these rows are perturbed in Step 3c is at most ε. Hence

with probability 1 − ε over the test distribution, f is accepted. A similar argument

shows that the test accepts g with probability 1 − ε. Note that in Step 3, the columns

given by f, g, are never re-sampled uniformly together. Hence they together cover G.
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Now we will show that ifG is a NO instance of LC then no t assignments can cover

the 2k-LIN-CSP with constraint hypergraph G. For the rest of the analysis, we will

use+1,−1 instead of the symbols 0, 1. Suppose for contradiction, there exist t assign-

ments f1, · · · , ft : {±1}2R → {±1} that form a t-cover to G. The probability that all

the t assignments are rejected in Step 4 is

E
u,v,w

E
T2

 t∏
i=1

1

2

 k∏
j=1

fi,v(xj)fi,w(yj) + 1

 =
1

2t
+

1

2t

∑
∅⊂S⊆{1,··· ,t}

E
u,v,w

E
T2

 k∏
j=1

fS,v(xj)fS,w(yj)

 .

(10.3.1)

where fS,v(x) :=
∏

i∈S fi,v(x). Since the t assignments form a t-cover, the LHS in

Equation (10.3.1) is 0 and hence, there exists an S ̸= ∅ such that

E
u,v,w

E
T2

[
k∏

j=1

fS,v(xj)fS,w(yj)

]
≤ −1/(2t − 1). (10.3.2)

The following lemma shows that this is not possible if t is not too large, thus proving

that there does not a exist t-cover.

Lemma 10.14 (Soundness). Let c0 ∈ (0, 1) be the constant from Theorem 6.6 and

S ⊆ {1, · · · , t}, |S| > 0. If G ॹ at most s-satॹfiable then

E
u,v,w

E
X,Y ∈T2

[
k∏

i=1

fS,v(xi)fS,w(yi)

]
≥ −O(ksc0/8)− 2O(k) s

(1−3c0)/8

ε3/2c0
.

We will continue the proof of Lemma 10.14, after the proof of Theorem 10.2.

Proof of Theorem 10.2. Using Theorem 6.6, the size of the CSP instance G produced by

the reduction isN = nr22
O(r) and the parameter s ≤ 2−d0r . Setting r = Θ(log log n),

gives thatN = 2poly(logn) for a constant k. Lemma 10.14 and Equation 10.3.2 imply that

O(ksc0/8) + 2O(k) s
(1−3c0)/8

ε3/2c0
≥ 1

2t − 1
.
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Since k is a constant, this gives that t = Ω(log log n).

Proof of Lemma 10.14. Notice that for a fixed u, the distribution ofX and Y have iden-

tical marginals. Hence the value of the above expectation, if calculated according to a

distribution which is the direct product of the marginals, is positive. We will first show

that the expectation can change by at mostO(ksc0/8) in moving to an attenuated ver-

sion of the functions (see Claim 10.15). Then we will show that the error incurred by

changing the distribution to the product distribution of the marginals has absolute

value at most 2O(k) s(1−3c0)/8

ε3/2c0
(see Claim 10.16). This is done by showing that there is

a labeling toG that satisfies an s fraction of the constraints if the error is more than

2O(k) s(1−3c0)/8

ε3/2c0
.

For the rest of the analysis, we write fv and fw instead of fS,v and fS,w respectively.

Let fv =
∑

α⊆[2R] f̂v(α)χα be the Fourier decomposition of the function and for

γ ∈ (0, 1), let T1−γfv :=
∑

α⊆[2R](1−γ)|α|f̂v(α)χα. The following claim is similar to

a lemma of Dinur & Kol [DK13, Lemma 4.11]. The only difference in the proof is that,

we use the smooth projections property of Theorem 6.6 (which was shown by Håstad

[Hås01, Lemma 6.9]).

Claim 10.15. Let γ := s(c0+1)/4ε1/c0 where c0 ॹ the constant from Theorem 6.6.

∣∣∣∣∣ E
u,v,w

E
T2

[
k∏

i=1

fv(xi)fw(yi)

]
− E

u,v,w
E
T2

[
k∏

i=1

T1−γfv(xi)T1−γfw(yi)

]∣∣∣∣∣ ≤ O(ksc0/8).

Fix u, v, w chosen by the test. Recall that we thought of fv as having domain
∏

i∈[L] Ωi

whereΩi = {0, 1}2d corresponds to the set of coordinates inBuv(i)∪B′
uv(i). Since the

grouping of coordinates depends on u, we define Infui [fv] := Inf i[fv]where i ∈ [L]

for explicitness. We will think of fv as fv :
∏

i∈L Ωi → RwhereΩi = {0, 1}d con-

sists of the d coordinates j such that πuv(j) = i. An Efron-Stein decomposition of

f :
∏

i∈L Ωi → R over the uniform distribution over {0, 1}dL, can be obtained from
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the Fourier decomposition as

fβ(x) =
∑

α⊆[dL]:π(α)=β

f̂(α)χα. (10.3.3)

From Equation (10.3.3),

Infui [fv] =
∑

α⊆[2dL]:i∈π̃uv(α)

f̂v(α)
2,

where π̃uv(α) := {i ∈ [L] : ∃j ∈ [R], (j ∈ α ∨ j +R ∈ α) ∧ πuv(j) = i}.

Claim 10.16. Let τu,v,w :=
∑

i∈[L] Inf
u

i [T1−γfv] · Inf
u

i [T1−γfw].

E
u,v,w

∣∣∣∣∣ET2
[

k∏
i=1

T1−γfv(xi)T1−γfw(yi)

]
− E

T2

[
k∏

i=1

T1−γfv(xi)

]
E
T2

[
k∏

i=1

T1−γfw(yi)

]∣∣∣∣∣
≤ 2O(k)

√
Eu,v,w τu,v,w

γ
.

We defer the proofs of Claim 10.16 and Claim 10.15 to later sections. From Claim 10.16

and Claim 10.15 and using the fact the the marginals of the test distribution T2 on (x1, . . . , xk)

is the same as marginals on (y1, . . . , yk), for γ := s(c0+1)/4ε1/c0 , we get

E
u,v,w

E
X,Y ∈T2

[
k∏

i=1

fv(xi)fw(yi)

]
≥ −O(ksc0/8)−2O(k)

√
Eu,v,w τu,v,w

γ
+E

u

(
E
v
E
T2

[
k∏

i=1

T1−γfv(xi)

])2

.

(10.3.4)

If τu,v,w in expectation is large, there is a standard way of decoding the assignments

to a labeling to the label cover instance, as shown in Claim 10.17.

Claim 10.17. If G ॹ an at most s-satॹfiable instance of LC then

E
u,v,w

τu,v,w ≤ s

γ2
.
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Substituting above into Equation (10.3.4) proves Lemma 10.14.

We now prove Claim 10.17, Claim 10.16 and Claim 10.15.

Proof of Claim 10.17. Note that
∑

α⊆[2R](1 − γ)|α|f̂v(α)
2 ≤ 1. We will give a ran-

domized labeling to the LC instance. For each v ∈ V , choose a random α ⊆ [2R]with

probability (1 − γ)|α|f̂v(α)
2 and assign a uniformly random label j in α to v; if the

label j ≥ R, change the label to j − R and with the remaining probability assign an

arbitrary label. For u ∈ U , choose a random neighborw ∈ V and a random β ⊆ [2R]

with probability (1 − γ)|β|f̂w(β)
2, choose a random label ℓ in β and assign the label

π̃uw(ℓ) to u. With the remaining probability, assign an arbitrary label. The fraction of

edges satisfied by this labeling is at least

E
u,v,w

∑
i∈[L]

∑
(α,β):i∈π̃uv(α),i∈π̃uw(β)

(1− γ)|α|+|β|

|α| · |β|
f̂v(α)

2f̂w(β)
2.

Using the fact that 1/r ≥ γ(1−γ)r for every r > 0 and γ ∈ [0, 1], we lower bound 1
|α|

and 1
|β| by γ(1 − γ)|α| and γ(1 − γ)|β| respectively. The above is then lower bounded

by

γ2 E
u,v,w

∑
i∈[L]

 ∑
α:i∈π̃uv(α)

(1− γ)2|α|f̂v(α)
2

 ∑
β:i∈π̃uw(β)

(1− γ)2|β|f̂w(β)
2

 = γ2 E
u,v,w

τu,v,w.

SinceG is at most s-satisfiable, the labeling can satisfy at most s fraction of constraints

and the above equation is upper bounded by s.

Proof of Claim 10.16. It is easy to check that
∑

i∈[L] Inf
u

i [T1−γfv] ≤ 1/γ (see Wen-

ner [Wen13, Lemma 1.13]). For any u, v, w, since the test distribution satisfies the condi-
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tions of Theorem 2.4, we get

∣∣∣∣∣ET2
[

k∏
i=1

T1−γfv(xi)T1−γfw(yi)

]
− E

T2

[
k∏

i=1

T1−γfv(xi)

]
E
T2

[
k∏

i=1

T1−γfw(yi)

]∣∣∣∣∣ ≤ 2O(k)

√
τu,v,w
γ

.

The claim follows by taking expectation over u, v, w and using the concavity of square

root.

Proof of Claim 10.15. We will add the T1−γ operator to one function at a time and up-

per bound the absolute value of the error incurred each time byO(sc0/8). The total

error is at most 2k times the error in adding T1−γ to one function. Hence, it suffices to

prove the following

∣∣∣∣∣ E
u,v,w

E
T2

[
k∏

i=1

fv(xi)fw(yi)

]
− E

u,v,w
E
T2

[(
k−1∏
i=1

fv(xi)fw(yi)

)
fv(xk)T1−γfw(yk)

]∣∣∣∣∣ ≤ O(sc0/8).

(10.3.5)

Recall thatX,Y denote the matrices chosen by test T2. Let Y−k be the matrix obtained

from Y by removing the kth row and Fu,v,w(X,Y−k) :=
(∏k−1

i=1 fv(xi)fw(yi)
)
fv(xk).

Then, (10.3.5) can be rewritten as

∣∣∣∣ E
u,v,w

E
T2
[Fu,v,w(X,Y−k) (I − T1−γ) fw(yk)]

∣∣∣∣ ≤ O(sc0/8). (10.3.6)

Let U be the operator that maps functions on the variable yk, to one on the variables

(X, Y−k) defined by

(Uf)(X,Y−k) := E
yk|X,Y−k

f(yk).

LetGu,v,w(X,Y−k) := (U(I − T1−γ)fw) (X, Y−k). Note that Ey∈{0,1}2R Gu,v,w(y) =

0. For the rest of the analysis, fix u, v, w chosen by the test. We will omit the subscript

u, v, w from now on for notational convenience. The domain ofG can be thought

of as ({0, 1}2k−1)2dL and the test distribution on any row is independent across the

blocks {Buv(i) ∪ B′
uv(i)}i∈[L]. We now think ofG as having domain

∏
i∈[L]Ωi where
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Ωi = ({0, 1}2k−1)2d corresponds to the set of rows inBuv(i) ∪ B′
uv(i). Let the follow-

ing be the Efron-Stein decomposition ofGwith respect to T2,

G(X,Y−k) =
∑
α⊆[L]

Gα(X,Y−k).

The following technical claim follows from a result similar to [DK13, Lemma 4.7] and

then using [Mos10, Proposition 2.12]. We defer its proof to Section 10.3.1.

Claim 10.18. For α ⊆ [L]

∥Gα∥2 ≤ (1− ε)|α|
∑

β⊆[2R]:π̃uw(β)=α

(
1− (1− γ)2|β|

)
f̂w(β)

2 (10.3.7)

where π̃uw(β) := {i ∈ [L] : ∃j ∈ [R], (j ∈ β ∨ j +R ∈ β) ∧ πuv(j) = i}.

Substituting the Efron-Stein decomposition ofG,F into the LHS of (10.3.6) gives

∣∣∣∣ E
u,v,w

E
T2
[Fu,v,w(X, Y−k) (I − T1−γ) fw(yk)]

∣∣∣∣ = ∣∣∣∣ E
u,v,w

E
T2
F (X, Y−k)G(X, Y−k)

∣∣∣∣
(By orthonormality of

Efron-Stein decomposition) =

∣∣∣∣∣∣ E
u,v,w

∑
α⊆[L]

E
T2
Fα(X, Y−k)Gα(X, Y−k)

∣∣∣∣∣∣
(By Cauchy-Schwarz inequality) ≤ E

u,v,w

√∑
α⊆[L]

∥Fα∥2 ·
√∑

α⊆[L]

∥Gα∥2

(Using
∑
α⊆[L]

∥Fα∥2 = ∥F∥22 = 1) ≤ E
u,v,w

√∑
α⊆[L]

∥Gα∥2.

Using concavity of square root and substituting for ∥Gα∥2 from Equation (10.3.7), we

get that the above is upper bounded by

√√√√√∑
α⊆[L]

∑
β⊆[2R]:

π̃uw(β)=α

E
u,v,w

(1− ε)|α|
(
1− (1− γ)2|β|

)
f̂w(β)

2︸ ︷︷ ︸
=:Termu,w(α,β)

.
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We will now break the above summation into three different parts and bound each

part separately.

Θ0 := E
u,w

∑
α,β:|α|≥ 1

εsc0/4

Termu,w(α, β), Θ1 := E
u,w

∑
α,β:|α|< 1

εsc0/4

|β|≤ 2

s1/4ε1/c0

Termu,w(α, β),

Θ2 := E
u,w

∑
α,β:|α|< 1

εsc0/4

|β|> 2

s1/4ε1/c0

Termu,w(α, β).

Upper BoundingΘ0: When |α| > 1
εsc0/4

, (1 − ε)|α| < sc0/4. Also since fw is

{+1,−1} valued, sum of squares of Fourier coefficient is 1. Hence |Θ0| < sc0/4.

Upper BoundingΘ1: When |β| ≤ 2
s1/4ε1/c0

,

1− (1− γ)2|β| ≤ 1−
(
1− 4

s1/4ε1/c0
γ

)
=

4

s1/4ε1/c0
γ = 4sc0/4.

Again since the sum of squares of Fourier coefficients is 1, |Θ1| ≤ 4sc0/4.

Upper BoundingΘ2: From the smooth projections property of Theorem 6.6, we

have that for any v ∈ V and β with |β| > 2
s1/4ε1/c0

, the probability that |π̃uv(β)| <

1/εsc0/4, for a random neighbor u, is at most εsc0/4. Hence |Θ2| ≤ sc0/4.

10.3.1 Proof of Claim 10.18

We will be reusing the notation introduced in the long code test T2. We denote the

k × 2d dimensional matrixX|B(i)∪B′(i) byX i and Y |B(i)∪B′(i) by Y i. Also byX i
j ,

we mean the jth row of the matrixX i and Y i
−k is the first k − 1 rows of Y i. The spaces

of the random variablesX i, X i
j, Y

i
−k will be denoted byX i,X i

j ,Y i
−k.
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Before we proceed to the proof of claim, we need a few definitions and lemmas re-

lated to correlated spaces defined by Mossel [Mos10].

Definition 10.19. Let (Ω1 × Ω2, µ) be a finite correlated space, the correlation between

Ω1 and Ω2 with respect to µ ॺ defined ॷ

ρ(Ω1,Ω2;µ) := max
f :Ω1→R,E[f ]=0,E[f2]≤1
g:Ω2→R,E[g]=0,E[g2]≤1

E
(x,y)∼µ

[|f(x)g(y)|].

Definition 10.20 (Markov Operator). Let (Ω1 × Ω2, µ) be a finite correlated space, the

Markov operator, associated with thॹ space, denoted by U , maps a function g : Ω2 → R

to functions Ug : Ω1 → R by the following map:

(Ug)(x) := E
(X,Y )∼µ

[g(Y ) | X = x].

The following results (from [Mos10]) provide a way to upper bound correlation of a

correlated spaces.

Lemma 10.21 ([Mos10, Lemma 2.8]). Let (Ω1 × Ω2, µ) be a finite correlated space. Let

g : Ω2 → R be such that E(x,y)∼µ[g(y)] = 0 and E(x,y)∼µ[g(y)
2] ≤ 1. Then, among

all functions f : Ω1 → R that satisfy E(x,y)∼µ[f(x)
2] ≤ 1, the maximum value of

|E[f(x)g(y)]| ॹ given ॷ:

|E[f(x)g(y)]| =
√

E
(x,y)∼µ

[(Ug(x))2].

Proposition 10.22 ([Mos10, Proposition 2.11]). Let (
∏n

i=1Ω
(1)
i ×

∏n
i=1 Ω

(2)
i ,
∏n

i=1 µi)

be a product correlated spacॸ. Let g :
∏n

i=1Ω
(2)
i → R be a function and U be the

Markov operator mapping functions form space
∏n

i=1Ω
(2)
i to the functions on space∏n

i=1Ω
(1)
i . If g =

∑
S⊆[n] gS and Ug =

∑
S⊆[n](Ug)S be the Efron-Stein decom-
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position of g and Ug respectively then,

(Ug)S = U(gS)

i.e. the Efron-Stein decomposition commutॸ with Markov operators.

Proposition 10.23 ([Mos10, Proposition 2.12]). Assume the setting of Proposition 10.22

and furthermore assume that ρ(Ω(1)
i ,Ω

(2)
i ;µi) ≤ ρ for all i ∈ [n], then for all g it holds

that

∥U(gS)∥2 ≤ ρ|S|∥gS∥2.

We will prove the following claim.

Claim 10.24. For each i ∈ [L],

ρ
(
X i × Y i

−k,Y i
k; T i

2

)
≤

√
1− ε.

Before proving this claim, first let’s see how it leads to the proof of Claim 10.18.

Proof of Claim 10.18. Proposition 10.22 shows that the Markov operator U commutes

with taking the Efron-Stein decomposition. Hence,Gα := (U((I − T1−γ)fw))α =

U((I − T1−γ)(fw)α),where (fw)α is the Efron-Stein decomposition of fw w.r.t the

marginal distribution of T2 on
∏L

i=1 Y i
k which is a uniform distribution. Therefore,

(fw)α =
∑

β⊆[2R],
π̃uw(β)=α

f̂w(β)χβ . Using Proposition 10.23 and Claim 10.24, we have

∥Gα∥22 = ∥U((I − T1−γ)(fw)α)∥22 ≤ (
√
1− ε)2|α|∥(I − T1−γ)(fw)α∥22

= (1− ε)|α|
∑

β⊆[2R]:π̃uw(β)=α

(
1− (1− γ)2|β|

)
f̂w(β)

2,

where the norms are with respect to the marginals of T2 in the corresponding spaces.
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Proof of Claim 10.24. Recall the random variable c2 ∈ {∗, 0, 1} defined in Step 3 of test

T2 . Let g and f be the functions that satisfies E[g] = E[f ] = 0 andE[g2],E[f 2] ≤ 1

such that ρ
(
X i × Y i

−k,Y i
k; T i

2

)
= E[|fg|]. Define theMarkov Operator

Ug(X i, Y i
−k) = E

(X̃,Ỹ )∼T i
2

[g(Ỹk) | (X̃, Ỹ−k) = (X i, Y i
−k)].

By Lemma 10.21, we have

ρ
(
X i × Y i

−k,Y i
k; T i

2

)2 ≤ E
T i
2

[Ug(X i, Y i
−k)

2]

= (1− 2ε) E
T i
2

[Ug(X i, Y i
−k)

2 | c2 = ∗] + ε E
T i
2

[Ug(X i, Y i
−k)

2 | c2 = 0]+

ε E
T i
2

[Ug(X i, Y i
−k)

2 | c2 = 1]

≤ (1− 2ε) + ε E
T i
2

[Ug(X i, Y i
−k)

2 | c2 = 0] + ε E
T i
2

[Ug(X i, Y i
−k)

2 | c2 = 1],

where the last inequality uses the fact that ET i
2
[Ug(X i, Y i

−k)
2 | c2 = ∗] = E[g2]which

is at most 1. Consider the case when c2 = 0. By definition, we have

E
T i
2

[Ug(X i, Y i
−k)

2 | c2 = 0] = E(
Xi,
Y i
−k

)
∼T i

2

(
E

(X̃,Ỹ )∼T i
2

[g(Ỹk) | (X̃, Ỹ−k) = (X i, Y i
−k) ∧ c2 = 0]

)2

.

Under the conditioning, for any fixed value ofX i, Y i
−k, the value of Ỹk|B′(i) is a uni-

formly random string whereas Ỹk|B(i) is a fixed string (since the parity of all columns

inB(i) is 1). Let U be the uniform distribution on {−1,+1}d andP(X i, Y i
−k) ∈
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{+1,−1}d denotes the column wise parities of
[
Xi|B(i)

Y i
−k|B(i)

]
.

E
T i
2

[Ug(X i, Y i
−k)

2 | c2 = 0] = E
Xi,Y i

−k∼T i
2

(
E

(X̃,Ỹ )∼T i
2

[
g(Ỹk) | (X̃,Ỹ−k)=(Xi,Y i

−k)∧
c2=0

])2

= E
Xi,Y i

−k∼T i
2 ,

z=P(Xi,Y i
−k)

(
E

r∼U
[g(−z, r)]

)2

= E
z∼U

(
E

r∼U
[g(z, r)]

)2
(Since marginal on z is uniform)

= E
z∼U

 E
r∈U

∑
α⊆B(i)∪B′(i)

ĝ(α)χα(z, r)

2

= E
z∼U

 ∑
α⊆B(i)∪B′(i)

ĝ(α) E
r∈U

[χα(z, r)]

2

= E
z∼U

 ∑
α⊆B(i)

ĝ(α)χα(z)

2

=
∑

α⊆B(i)

ĝ(α)2.

Similarly we have,

E
T i
2

[Ug(X i, Y i
−k)

2 | c2 = 1] =
∑

α⊆B′(i)

ĝ(α)2.

Now we can bound the correlation as follows:

ρ
(
X i × Y i

−k,Y i
k; T i

2

)2 ≤(1− 2ε) + ε
∑

α⊆B(i)

ĝ(α)2 + ε
∑

α⊆B′(i)

ĝ(α)2

≤(1− 2ε) + ε
∑

α⊆B(i)∪B′(i)

ĝ(α)2 (Using ĝ(φ) = E[g] = 0)

≤(1− ε). (Using E[g2] ≤ 1 and Parseval’s Identity)
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10.4 Strong Hardness of 4-LIN

In this section, we prove Theorem 10.4. We give a reduction from an instance of LC,

G = (U, V,E, [L], [R], {πe}e∈E) as in Definition 6.5, to a 4-LIN-CSP instance G =

(V , E). The set of variables V is V × {0, 1}2R. Any assignment to V is given by a set of

functions fv : {0, 1}2R → {0, 1}, for each v ∈ V . The set of constraints E is given by

the following test which checks whether fv’s are long codes of a good labeling to V .

Long Code Test T3:

1. Choose u ∈ U uniformly and neighbors v, w ∈ V of u uniformly and indepen-

dently at random.

2. Choose x, x′, z, z′ uniformly and independently from {0, 1}2R and y from

{0, 1}2L. Choose (η, η′) ∈ {0, 1}2L × {0, 1}2L as follows: Independently

for each i ∈ [L], (ηi, ηL+i, η
′
i, η

′
L+i) is set to

(a) (0, 0, 0, 0)with probability 1− 2ε,

(b) (1, 0, 1, 0)with probability ε and

(c) (0, 1, 0, 1)with probability ε.

3. For y ∈ {0, 1}2L, let y ◦ πuv ∈ {0, 1}2R be the string such that (y ◦ πuv)i :=

yπuv(i) for i ∈ [R] and (y ◦ πuv)i := yπuv(i−R)+L otherwise. Given η ∈

{0, 1}2L, z ∈ {0, 1}2R, the string η ◦ πuv · z ∈ {0, 1}2R is obtained by tak-

ing coordinate-wise product of η ◦ πuv and z. Accept iff

fv(x)+fv(x+y◦πuv+η◦πuv·z)+fw(x
′)+fw(x

′+y◦πuw+η′◦πuw·z′+1) = 1 (mod 2).

(10.4.1)

(Here by addition of strings, we mean the coordinate-wise sum modulo 2.)
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Lemma 10.25 (Completeness). If G ॹ an YES instance of LC, then there exists f, g such

that each of them covers 1− ε fraction of E and they together cover all of E .

Proof. Let ℓ : U ∪ V → [L] ∪ [R] be a labeling toG that satisfies all the constraints.

Consider the assignments given by fv(x) := xℓ(v) and gv(x) := xR+ℓ(v) for each

v ∈ V . On input fv, for any pair of edges (u, v), (u,w) ∈ E, and x, x′, z, z′, η, η′, y

chosen by the long code test T3, the LHS in (10.4.1) evaluates to

xℓ(v)+xℓ(v)+yℓ(u)+ηℓ(u)zℓ(v)+x′
ℓ(w)+x′

ℓ(w)+yℓ(u)+η′ℓ(u)z
′
ℓ(w)+1 = ηℓ(u)zℓ(v)+η′ℓ(u)z

′
ℓ(w)+1.

Similarly for gv, the expression evaluates to ηL+ℓ(u)zR+ℓ(v) + η′L+ℓ(u)z
′
R+ℓ(w) + 1. Since

(ηi, η
′
i) = (0, 0)with probability 1− ε, each of f, g covers 1− ε fraction of E . Also for

i ∈ [L]whenever (ηi, η′i) = (1, 1), (ηL+i, η
′
L+i) = (0, 0) and vice versa. So one of the

two evaluations above is 1 (mod 2). Hence the pair of assignment f, g cover E .

Lemma 10.26 (Soundness). Let c0 be the constant from Theorem 6.6. If G ॹ at most s-

satॹfiable with s < δ10/c0+5

4
, then any independent set in G hॷ fractional size at most

δ.

Proof. Let I ⊆ V be an independent set of fractional size δ in the constraint graph G.

For every variable v ∈ V , let fv : {0, 1}2R → {0, 1} be the indicator function of the

independent set restricted to the vertices that correspond to v. Since I is an indepen-

dent set, we have

E
u,v,w

E
x,x′,
z,z′,
η,η′,y

[fv(x)fv(x+ y ◦ πuv + η ◦ πuv · z)fw(x′)fw(x
′ + y ◦ πuw + η′ ◦ πuw · z′ + 1)] = 0.

(10.4.2)

For α ⊆ [2R], let π⊕
uv(α) ⊆ [2L] be the set containing elements i ∈ [2L] such that if

i < L there are an odd number of j ∈ [R] ∩ α with πuv(j) = i and if i ≥ L there are

an odd number of j ∈ ([2R] \ [R])∩α with πuv(j −R) = i−L . It is easy to see that
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χα(y ◦ πuw) = χπ⊕
uv(α)

(y). Expanding fv in the Fourier basis and taking expectation

over x, x′ and y, we get that

E
u,v,w

∑
α,β⊆[2R]:π⊕

uv(α)=π⊕
uw(β)

f̂v(α)
2f̂w(β)

2(−1)|β| E
z,z′,η,η′

[χα(η ◦ πuv · z)χβ(η
′ ◦ πuw · z′)] = 0.

(10.4.3)

Now the expectation over z, z′ simplifies as

E
u,v,w

∑
α,β⊆[2R]:π⊕

uv(α)=π⊕
uw(β)

f̂v(α)
2f̂w(β)

2(−1)|β| Pr
η,η′

[α · (η ◦ πuv) = β · (η′ ◦ πuw) = 0̄]︸ ︷︷ ︸
=:Termu,v,w(α,β)

= 0,

(10.4.4)

where we think of α, β as the characteristic vectors in {0, 1}2R of the corresponding

sets. We will now break up the above summation into different parts and bound each

part separately. For a projection π : [R] → [L], define π̃(α) := {i ∈ [L] : ∃j ∈

[R], (j ∈ α ∨ j +R ∈ α) ∧ (π(j) = i)}. We need the following definitions.

Θ0 := E
u,v,w

∑
α,β:

π⊕
uv(α)=π⊕

uw(β)=∅

Termu,v,w(α, β),

Θ1 := E
u,v,w

∑
α,β:

π⊕
uv(α)=π⊕

uw(β)̸=∅,
max{|α|,|β|}≤2/δ5/c0

Termu,v,w(α, β),

Θ2 := E
u,v,w

∑
α,β:

π⊕
uv(α)=π⊕

uw(β)̸=∅,
max{|π̃uv(α)|,|π̃uw(β)|}≥1/δ5

Termu,v,w(α, β),

Θ3 := E
u,v,w

∑
α,β:

π⊕
uv(α)=π⊕

uw(β)̸=∅,
max{|α|,|β|}>2/δ5/c0 ,

max{|π̃uv(α)|,|π̃uw(β)|}<1/δ5

Termu,v,w(α, β).
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Lower BoundingΘ0: If π⊕
uw(β) = ∅, then |β| is even. Hence, all the terms inΘ0

are positive and

Θ0 ≥ E
u,v,w

Termu,v,w(0, 0) = E
u

(
E
v
f̂v(0)

2
)2

≥
(
E
u,v

f̂v(0)

)4

= δ4.

Upper BoundingΘ1: Consider the following strategy for labeling vertices u ∈ U

and v ∈ V . For u ∈ U , pick a random neighbor v, choose α with probability f̂v(α)2

and set its label to a random element in π̃uv(α). Forw ∈ V , choose β with probability

f̂w(β)
2 and set its label to a random element of β. If the label j ≥ R, change the label

to j − R. The probability that a random edge (u,w) of the label cover is satisfied by

this labeling is

E
u,v,w

∑
α,β:

π̃uv(α)∩π̃uw(β)̸=∅

f̂v(α)
2f̂w(β)

2 1

|π̃uv(α)| · |β|
≥ E

u,v,w

∑
α,β:

π⊕
uv(α)=π⊕

uw(β)̸=∅
max{|α|,|β|}≤2/δ5/c0

f̂v(α)
2f̂w(β)

2 δ
10/c0

4

≥ |Θ1| ·
δ10/c0

4
.

Since the instance is at most s-satisfiable, the above is upper bounded by s. Choosing

s < δ10/c0+5

4
, will imply |Θ1| ≤ δ5.

Upper BoundingΘ2: Suppose |π̃uv(α)| ≥ 1/δ5, then note that

Pr
η,η′

[α·(η◦πuv) = β·(η′◦πuw) = 0] ≤ Pr
η
[α·(η◦πuv) = 0] ≤ (1−ε)|π̃uv(α)| ≤ (1−ε)1/δ

5

.

Since the sum of squares of Fourier coefficients of f is less than 1 and ε is a constant, we

get that |Θ2| ≤ 1/2Ω(1/δ5) < O(δ5).

Upper BoundingΘ3: From the smooth projections property of Theorem 6.6, we

have that for any v ∈ V and α ⊆ [2R]with |α| > 2/δ5/c0 , the probability that

126



|π̃uv(α)| < 1/δ5, for a random neighbor u of v, is at most δ5. Hence |Θ3| ≤ δ5.

On substituting the above bounds in Equation (10.4.4), we get that δ4 − O(δ5) ≤ 0

which gives a contradiction for small enough δ. Hence there is no independent set in G

of size δ.

Proof of Theorem 10.4. From Theorem 6.6, the size of the CSP instance G produced by

the reduction isN = nr22
O(r) and the parameter s ≤ 2−d0r. Setting r = Θ(log log n),

gives thatN = 2poly(logn) and the size of the largest independent set δ = 1/poly(log n) =

1/poly(logN).
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