Deep Expander Networks Efficient Deep Networks from Graph Theory

Ameya Prabhu*, Girish Varma*, Anoop Namboodiri IIIT Hyderabad INDIA

EFFICIENT CNNs

APPROACHES TOWARDS EFFICIENCY

Better Layer Connections: Train \rightarrow Prune

X Layer structure specific to given data

Not Transferrable

CAN WE: PRUNE \rightarrow TRAIN

Train \rightarrow Prune

X Need to train full network

X Need Multiple trainings

X Layer structure specific to given data

Not Transferrable

Prune \rightarrow Train

- \checkmark Train a compact network
- ✓ Single training

✓ Generic layer structure, independent of data Transferrable

Epochs

Pruning Without Data

- Need to sparsify connections
- Need to ensure multi-layer connectivity

<u>Regular Pruning</u>

- Not well connected
- Retraining does not help

All this to be done without data!!

EXPANDER GRAPHS

Combinatorics: Highly connected; Sever many edges to disconnect any large part of the graph

Probability: Random walk on these converges to its limiting distribution as rapidly as possible.

Algebra: First positive eigenvalue of their laplace operator is bounded away from zero.

Large expansion \rightarrow Large spectral gap

Expander Graph are are simultaneously sparse and highly connected.

CONSTRUCTING EXPANDER LAYERS

GUARANTEES ABOUT X-NETS

Theorem 1 (Sensitivity):

Let n be the number of input as well as output nodes in the network and G1, G2,..., Gt be D-regular bipartite expander graphs with n nodes on both sides. Then every output neuron is sensitive to every input in a Deep X-Net defined by G i 's with depth $t = O(\log_D n)$.

Theorem 2 (Rich Connectivity):

Let n be the number of input as well as output nodes in the network and G be D regular bipartite expander graph with n nodes on both sides. Let S,T be subsets of input and output nodes in the X-Net layer defined by G. The number of edges between S and T $|E| \approx \frac{D|S||T|}{T}$

Lots of paths between any S and T

NOTE: CONNECTIVITY GRAPH OF CONVOLUTIONS

Connectivity Graph

NOTE: CONNECTIVITY GRAPH OF CONVOLUTIONS

Connectivity Graph

OUR CONVOLUTIONAL LAYER

Red and **green** represent the subsets that are connected

EXPANDER VS. FULL CONVOLUTION

IMPLEMENTING X-NETS

BlockSparse

EXPERIMENTAL RESULTS

Comparisons with :

- Layer Connectivity Graphs: Group Convolution
- Network Compression: Pruning
- Efficient Architectures: ResNet and DenseNet

BENCHMARKING WITH GROUP CONVOLUTION

X-Conv beats G-Conv by ~ 4-5% on a compact MobileNet-0.5 on Imagenet

Compression	G-Conv	X-Conv (Ours)	Err. Red.
2x	42.55%	41.78%	0.8%
4x	50.59%	46.00%	4.6%
8x	54.87%	50.77%	4.1%
16x	60.97%	55.37%	5.6%

COMPARISON WITH PRUNING

VGG-16 on CIFAR-10

Method	Accuracy	# Params
Li et al.	93.4 %	5.4 M (2.8x)
NW Slimming	93.8 %	2.3 M (6.5x)
X-VGG 16-1	93.4 %	1.65 M (9x)
X-VGG 16-2	93.0 %	1.15 M (13x)
VGG-16 Orig	94.0 %	15.0 M (1.0x)

X-Nets are as compressible as the best pruning techniques

AlexNet on ImageNet

Method	Accuracy	# Params	
Collins et al.	55.1 %	15.2 M (4x)	
Zhou et al.	54.4 %	14.1 M (4.3x)	
Han et al.	57.2 %	6.7 M (9.1x)	
Srinivas et al.	56.9 %	5.9 M (10.3x)	
Guo et al.	56.9 %	3.4 M (18x)	
X-AlexNet-1	55.2 %	7.6 M (8x)	
X-AlexNet-2	56.2 %	9.7 M (6.3x)	Failu
AlexNet-Orig	57.2 %	61 M (1.0x)	Case

Advantages over Pruning

Transferable Architectures

Go Wider / Deeper

OR

Going Wider and Deeper

Wider/Deeper networks with higher compression achieves same error rate with fewer parameters

RESNET VS X-RESNET ON IMAGENET

RESNET VS X-RESNET ON IMAGENET

DENSENET VS X-DENSENET ON CIFAR-10

DENSENET VS X-DENSENET ON CIFAR-10

IN SUMMARY:

- X-Nets provide a principled way to compress deep networks.
- Single-cycle training of a lighter data-agnostic network.
- Allows training of wider and deeper networks.
- Achieves good error-flops trade-off.
- Highlights the use of global connectivity analysis in network architecture design.

Thank You !!

Using our Pytorch Code:

from layers import ExpanderLinear, ExpanderConv2d

- nn.Conv2d(...) \rightarrow ExpanderConv2d(..., expandSize=128)
- nn.Linear(...) → ExpanderLinear(..., expandSize=256)

Visit us @ Poster ID: P-4A-04

GitHub Repo: https://github.com/DrImpossible/Deep-Expander-Networks