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Better Network Design
• Inception Net ● NAS Net
• ResNet ● P-NAS Net

Efficient Layer Modification

• Group Convolutions
• Pruning

APPROACHES TOWARDS EFFICIENCY

weight layer

weight layer

relu

relu
+

X
before pruning after pruning

pruning
synapses

pruning
neurons

↑ Connectivity ↓ Size 



BETTER LAYER CONNECTIONS: TRAIN→ PRUNE

Train → Prune

✘ Need to train full network
✘ Need Multiple trainings

✘ Layer structure specific to 
given  data

Not Transferrable
Epochs
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Train → Prune

✘ Need to train full network
✘ Need Multiple trainings

✘ Layer structure specific to 
given  data

Not Transferrable
Epochs

CAN WE: PRUNE→ TRAIN

Prune → Train

✓ Train a compact network

✓ Single training
✓ Generic layer structure, 
independent of data

Transferrable
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PRUNING WITHOUT DATA

•Need to sparsify connections
•Need to ensure multi-layer connectivity
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• Not well connected
• Retraining does not help
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Combinatorics: Highly 
connected; Sever many 
edges to disconnect any 
large part of the graph

EXPANDER GRAPHS

Expander Graph are are simultaneously sparse and highly connected. 

Probability: Random walk on 
these converges to its limiting 
distribution as rapidly as 
possible. 

Algebra: First positive 
eigenvalue of their laplace
operator is bounded away 
from zero. 

Large expansion  →      .
Large spectral gap
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• Pick an input node
• Connect it to D random outputs
• Repeat for every input node
• Repeat for every layer

CONSTRUCTING EXPANDER LAYERS
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GUARANTEES ABOUT X-NETS

Theorem 1 (Sensitivity): 
Let n be the number of input as well as output nodes 
in the network and G1 , G2 ,··· , Gt be D-regular 
bipartite expander graphs with n nodes on both sides. 
Then every output neuron is sensitive to every input in 
a Deep X-Net defined by G i ’s with depth t = 
O(logDn).

Theorem 2 (Rich Connectivity): 
Let n be  the  number  of  input  as  well  as output 
nodes in the network and G be D regular bipartite 
expander graph with n nodes on both sides. Let S,T be 
subsets of input and output nodes in the X-Net layer 
defined by G. The number of edges between S and T 
! ≈ # $ %

&

Lots of paths between any S and T 
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NOTE: CONNECTIVITY GRAPH OF CONVOLUTIONS
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OUR CONVOLUTIONAL LAYER

Red and green represent the subsets that are connected
… … …



EXPANDER VS. FULL CONVOLUTION
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IMPLEMENTING X-NETS

BlockSparse



EXPERIMENTAL RESULTS
Comparisons with :

• Layer Connectivity Graphs: Group Convolution

• Network Compression: Pruning

• Efficient Architectures: ResNet and DenseNet



BENCHMARKING WITH GROUP CONVOLUTION
X-Conv beats G-Conv by ~ 4-5% 

on a compact MobileNet-0.5 on Imagenet

Compression G-Conv X-Conv
(Ours)

Err. Red.

2x 42.55% 41.78% 0.8%

4x 50.59% 46.00% 4.6%

8x 54.87% 50.77% 4.1%

16x 60.97% 55.37% 5.6%



COMPARISON WITH PRUNING

X-Nets are as compressible as 
the best pruning techniques

Method Accuracy # Params

Li et al. 93.4 % 5.4 M (2.8x)

NW Slimming 93.8 % 2.3 M (6.5x)

X-VGG 16-1 93.4 % 1.65 M (9x)

X-VGG 16-2 93.0 % 1.15 M (13x)

VGG-16 Orig 94.0 % 15.0 M (1.0x)

Method Accuracy # Params

Collins et al. 55.1 % 15.2 M (4x)

Zhou et al. 54.4 % 14.1 M (4.3x)

Han et al. 57.2 % 6.7 M (9.1x)

Srinivas et al. 56.9 % 5.9 M (10.3x)

Guo et al. 56.9 % 3.4 M (18x)

X-AlexNet-1 55.2 % 7.6 M (8x)

X-AlexNet-2 56.2 % 9.7 M (6.3x)

AlexNet-Orig 57.2 % 61 M (1.0x)

Failure 
Case ?

VGG-16 on CIFAR-10 AlexNet on ImageNet



ADVANTAGES OVER PRUNING
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Transferable Architectures



GOING WIDER AND DEEPER
Wider/Deeper networks with higher compression achieves same 
error rate with fewer parameters
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DENSENET VS X-DENSENET ON CIFAR-10 
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"→ X-DenseNet
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IN SUMMARY:
• X-Nets provide a principled way to 

compress deep networks.

• Single-cycle training of a lighter 
data-agnostic network.

• Allows training of wider and 
deeper networks.

• Achieves good error-flops trade-off.

• Highlights the use of global 
connectivity analysis in network 
architecture design.
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THANK YOU !! 

Visit us @ 
Poster ID: P-4A-04

GitHub Repo:     https://github.com/DrImpossible/Deep-Expander-Networks

Using our Pytorch Code:

from layers import ExpanderLinear,ExpanderConv2d

nn.Conv2d(...) → ExpanderConv2d(..., expandSize=128)

nn.Linear(...) → ExpanderLinear(..., expandSize=256)


