
Deep Expander Networks
Efficient Deep Networks from Graph Theory

Ameya Prabhu*, Girish Varma*, Anoop Namboodiri
IIIT Hyderabad

INDIA

EFFICIENT CNNS

Operations [GFlops]

Ac
cu

ra
cy

 [
%

]

50

90

80

70

60

VGG-19

ResNet-152

MobileNet

NAS Net-A

SE Net

Inception V4

Inception V3

↑Connectivity

↓ Size (Compress)

0 5 10 15 20

Better Network Design
• Inception Net ● NAS Net
• ResNet ● P-NAS Net

Efficient Layer Modification

• Group Convolutions
• Pruning

APPROACHES TOWARDS EFFICIENCY

weight layer

weight layer

relu

relu
+

X
before pruning after pruning

pruning
synapses

pruning
neurons

↑ Connectivity ↓ Size

BETTER LAYER CONNECTIONS: TRAIN→ PRUNE

Train → Prune

✘ Need to train full network
✘ Need Multiple trainings

✘ Layer structure specific to
given data

Not Transferrable
Epochs

PruneTrain Train Train TrainPrune Prune

Er
ro

r

Train

Train → Prune

✘ Need to train full network
✘ Need Multiple trainings

✘ Layer structure specific to
given data

Not Transferrable
Epochs

CAN WE: PRUNE→ TRAIN

Prune → Train

✓ Train a compact network

✓ Single training
✓ Generic layer structure,
independent of data

Transferrable

Train

Er
ro

r

Train

PRUNING WITHOUT DATA

•Need to sparsify connections
•Need to ensure multi-layer connectivity

5
4

3
2

1

5
4

3
2

1

5
4

3
2

1

5
4

3
2

1

5
4

3
2

1

5
4

3
2

1

5
4

3
2

1

5
4

3
2

1

• Not well connected
• Retraining does not help

I1
I2
I3
I4
I5

O1
O2
O3
O4
O5

Not Connected
Connected

Regular Pruning

All this to be done without data!!

A

B

Combinatorics: Highly
connected; Sever many
edges to disconnect any
large part of the graph

EXPANDER GRAPHS

Expander Graph are are simultaneously sparse and highly connected.

Probability: Random walk on
these converges to its limiting
distribution as rapidly as
possible.

Algebra: First positive
eigenvalue of their laplace
operator is bounded away
from zero.

Large expansion → .
Large spectral gap

0

1

• Pick an input node
• Connect it to D random outputs
• Repeat for every input node
• Repeat for every layer

CONSTRUCTING EXPANDER LAYERS

…

D

F-Exp(…)

GUARANTEES ABOUT X-NETS

Theorem 1 (Sensitivity):
Let n be the number of input as well as output nodes
in the network and G1 , G2 ,··· , Gt be D-regular
bipartite expander graphs with n nodes on both sides.
Then every output neuron is sensitive to every input in
a Deep X-Net defined by G i ’s with depth t =
O(logDn).

Theorem 2 (Rich Connectivity):
Let n be the number of input as well as output
nodes in the network and G be D regular bipartite
expander graph with n nodes on both sides. Let S,T be
subsets of input and output nodes in the X-Net layer
defined by G. The number of edges between S and T
! ≈ # $ %

&

Lots of paths between any S and T

S T S
T

…
.n

...

...

...

...

O(logD n)

S T

NOTE: CONNECTIVITY GRAPH OF CONVOLUTIONS
f1 f2

1 2 3 4 5 6 f1f2f3

f3*

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Connectivity Graph

f1

f2

f3

1
2
3
4
5
6

f1

f3

f2

I1

I1
I2

I2*

1 2 3

1 2 3

I1
I2

6
5

4
3

2
1

f 3
f 2

f 1

I 2
I 1

Top View

Conv Layers

NOTE: CONNECTIVITY GRAPH OF CONVOLUTIONS
f1 f2

1 2 3 4 5 6 f1f2f3

f3*

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

6
5

4
3

2
1

Connectivity Graph

f 3
f 2

f 1f1

f2

f3

1
2
3
4
5
6

f1

f3

f2

I1

I1
I2

I2*

1 2 3

1 2 3

I 2
I 1

I1
I2

Top View

Conv Layers

OUR CONVOLUTIONAL LAYER

Red and green represent the subsets that are connected
… … …

EXPANDER VS. FULL CONVOLUTION

f1

f2

f3

1
2
3
4
5
6

f1

f3

f2

I1
I2

f1

f2

f3

1
2
3
4
5
6

f1

f3

f2

I1
I2

Smaller Filters (Compressed)

Fewer Computations (Efficient)

Maintains Overall Connectivity

Full Convolution

Expander Convolution

IMPLEMENTING X-NETS

BlockSparse

EXPERIMENTAL RESULTS
Comparisons with :

• Layer Connectivity Graphs: Group Convolution

• Network Compression: Pruning

• Efficient Architectures: ResNet and DenseNet

BENCHMARKING WITH GROUP CONVOLUTION
X-Conv beats G-Conv by ~ 4-5%

on a compact MobileNet-0.5 on Imagenet

Compression G-Conv X-Conv
(Ours)

Err. Red.

2x 42.55% 41.78% 0.8%

4x 50.59% 46.00% 4.6%

8x 54.87% 50.77% 4.1%

16x 60.97% 55.37% 5.6%

COMPARISON WITH PRUNING

X-Nets are as compressible as
the best pruning techniques

Method Accuracy # Params

Li et al. 93.4 % 5.4 M (2.8x)

NW Slimming 93.8 % 2.3 M (6.5x)

X-VGG 16-1 93.4 % 1.65 M (9x)

X-VGG 16-2 93.0 % 1.15 M (13x)

VGG-16 Orig 94.0 % 15.0 M (1.0x)

Method Accuracy # Params

Collins et al. 55.1 % 15.2 M (4x)

Zhou et al. 54.4 % 14.1 M (4.3x)

Han et al. 57.2 % 6.7 M (9.1x)

Srinivas et al. 56.9 % 5.9 M (10.3x)

Guo et al. 56.9 % 3.4 M (18x)

X-AlexNet-1 55.2 % 7.6 M (8x)

X-AlexNet-2 56.2 % 9.7 M (6.3x)

AlexNet-Orig 57.2 % 61 M (1.0x)

Failure
Case ?

VGG-16 on CIFAR-10 AlexNet on ImageNet

ADVANTAGES OVER PRUNING

Epochs

Er
ro

r

Epochs

Er
ro

r

Train in 1 cycle

1M 1M 1M1M1M
1M1M1M

1M1M1M1M

Go Wider / Deeper

1M1M1M1M1M2M, x2

1M1M1M1M1M2M, x2

1M1M1M1M1M2M, x2

1M,
x2

1M,
x2

1M,
x2 1M,

x2

1M,
x2

1M,
x21M,
x2

1M,
x21M,

x2
1M,
x2
1M,
x21M,
x2

1M,
x2
1M,
x21M,
x2 1M,

x2
1M,
x21M,
x2

1M,
x2
1M,
x21M,
x2

OR

Transferable Architectures

GOING WIDER AND DEEPER
Wider/Deeper networks with higher compression achieves same
error rate with fewer parameters

40 80 160

Er
ro
r

FLOPs

!→ ResNet

"→ X-ResNet

RESNET VS X-RESNET ON IMAGENET

40 80 160

Er
ro
r

FLOPs

!→ ResNet

"→ X-ResNet

RESNET VS X-RESNET ON IMAGENET

Er
ro

r

FLOPs

DENSENET VS X-DENSENET ON CIFAR-10

!→ DenseNet

"→ X-DenseNet

5 10 202.5

Er
ro

r

FLOPs

DENSENET VS X-DENSENET ON CIFAR-10

!→ DenseNet

"→ X-DenseNet

5 10 202.5

IN SUMMARY:
• X-Nets provide a principled way to

compress deep networks.

• Single-cycle training of a lighter
data-agnostic network.

• Allows training of wider and
deeper networks.

• Achieves good error-flops trade-off.

• Highlights the use of global
connectivity analysis in network
architecture design.

Epochs

Er
ro

r

1M1M1M1M1M2M, x2

1M1M1M1M1M2M, x2

1M1M1M1M1M2M, x2

Er
ro

r

FLOPs
5 10 202.5

THANK YOU !!

Visit us @
Poster ID: P-4A-04

GitHub Repo: https://github.com/DrImpossible/Deep-Expander-Networks

Using our Pytorch Code:

from layers import ExpanderLinear,ExpanderConv2d

nn.Conv2d(...) → ExpanderConv2d(..., expandSize=128)

nn.Linear(...) → ExpanderLinear(..., expandSize=256)

