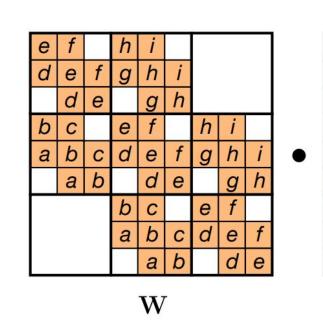
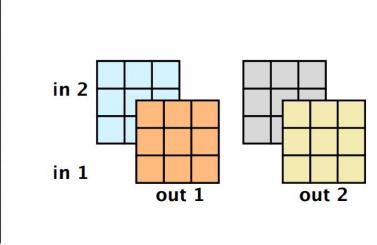


# **Invertible Convolutions for Normalizing Flows**

| а | b | С |         | 0 | 1 | 2 |  |
|---|---|---|---------|---|---|---|--|
| d | е | f | $\star$ | 3 | 4 | 5 |  |
| g | h | i |         | 6 | 7 | 8 |  |
|   | w |   | -       |   | x |   |  |





ogeboom et al. Emerging Convolutions for Generative Normalizing Flows. ICML, 2019 A 3x3 convolution with 1 in and out

channels and its matrix form.

A 3x3 convolution with 2 in and out channels and its matrix form.

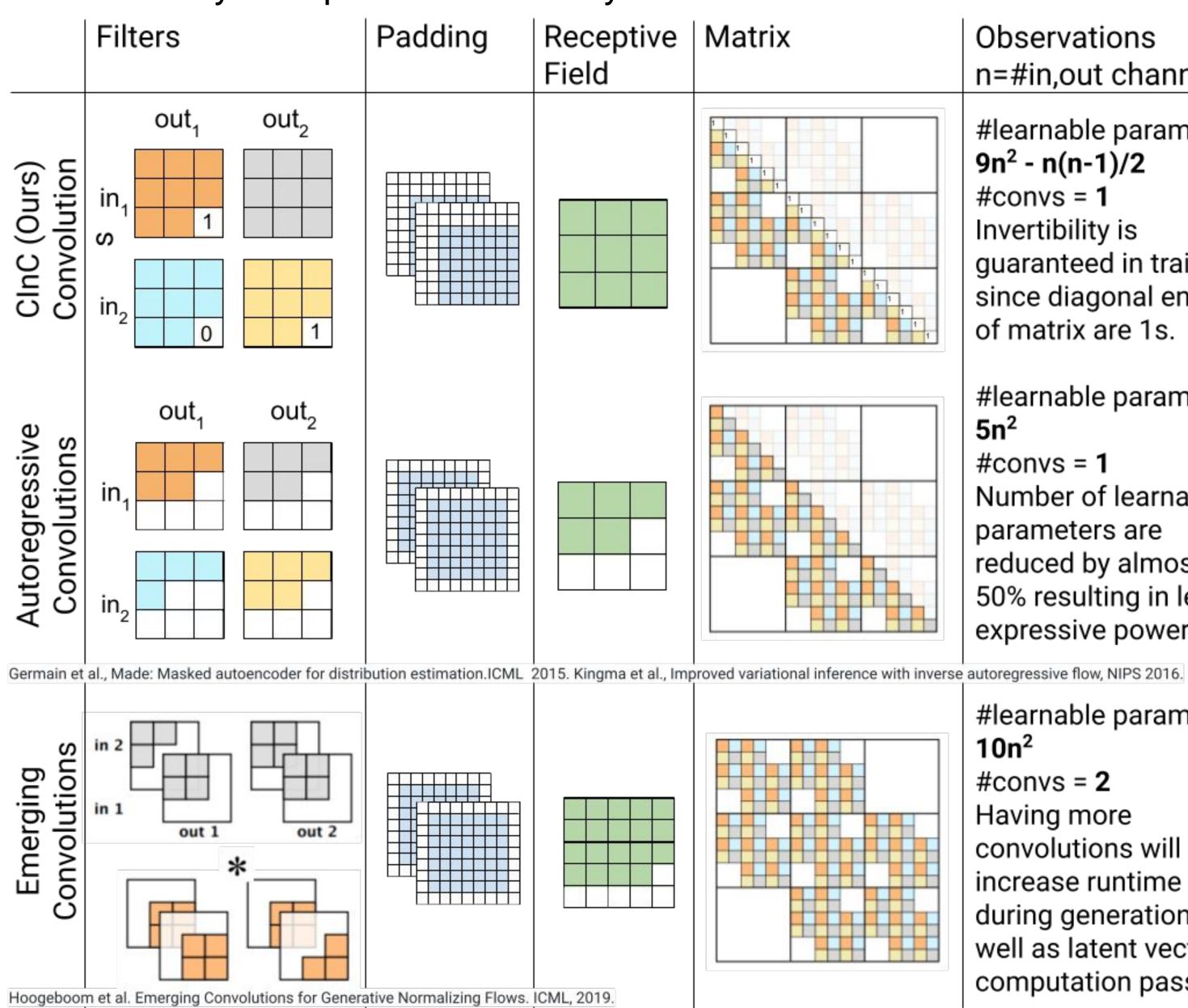
A general convolution need not be invertible and hence cannot be used for designing normalizing flows, which can be trained using Maximum Likelihood.

**Goal:** Design CNNs that are invertible, which can be used to build efficient and expressive normalizing flows..

# **Charecterizable Invertible Convolution (CInC)**

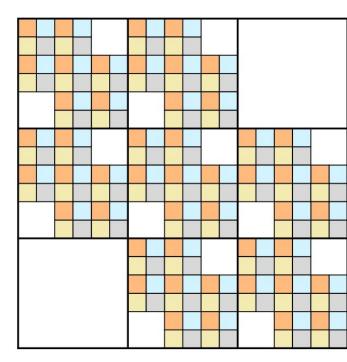
We design a convolution which

- 1. is guaranteed to be invertible during training,
- 2. has more learnable parameters leading to better expressivity,
- 3. and is easy to implement efficiently.



# **CInC Flow: Characterizable Invertible 3×3 Convolution**

<sup>1</sup>Machine Learning Lab, IIIT Hyderabad, India. <sup>2</sup>CS Dept., École Normale Supérieure (ENS), Paris-Saclay, France.



Observations n=#in,out channels.

#learnable parameters 9n<sup>2</sup> - n(n-1)/2 #convs = ' Invertibility is guaranteed in training since diagonal entries of matrix are 1s.

#learnable parameters 5n<sup>2</sup> #convs = 1 Number of learnable parameters are reduced by almost 50% resulting in lesser expressive power.

#learnable parameters 10n<sup>2</sup> #convs = **2** Having more convolutions will increase runtime during generation as well as latent vector computation passes.

## **Theoretical Guarantees**

**Characterization:** for N=1, diagonal entries of convolution matrix (M) are  $K_{n,n}$  of kernel (K) with size n and input is padded(top and left) with n-1.

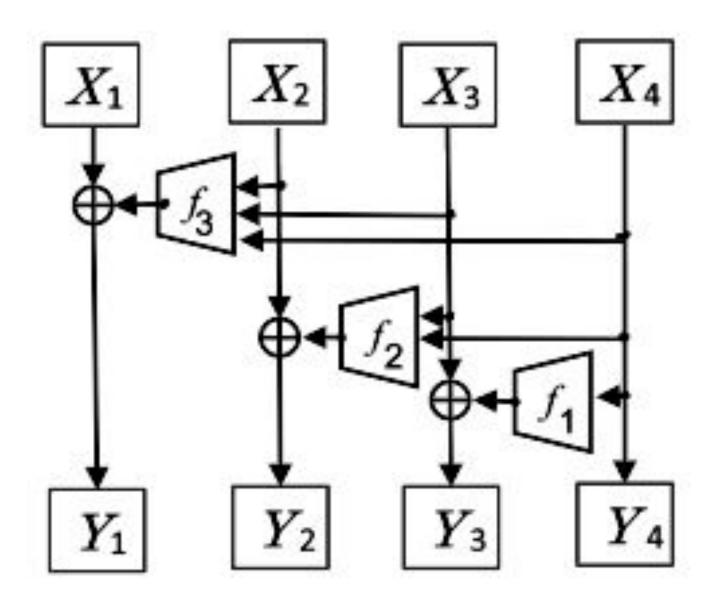
M is invertible iff  $K_{nn} \neq 0$ .

# **Improved Coupling Schemes**

**Coupling Layers:** we propose to use a modified version of the coupling layer designed to have a bigger receptive field. Inspired from generalized Feistal (Hong et al., 2010.)

### Quad-coupling (proposed):

We divide the input into four blocks  $x_{1}$ ,  $x_{2}$ ,  $x_{3}$ ,  $x_{4}$  =  $y_{4}$ 



### Why Quad-coupling?

1. expressive coupling mechanism 2. Flexibility

# **Model Architecture**

L levels, and D flow modules per level.

Flow module: Actnorm, Inv. 3x3 conv, Quad-coupling

**Squeeze module:** reorders pixels by reducing the spatial dimensions by a half, and increasing the channel depth by four.

x: input, z: output



**INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY** 

école-

HYDERABAD

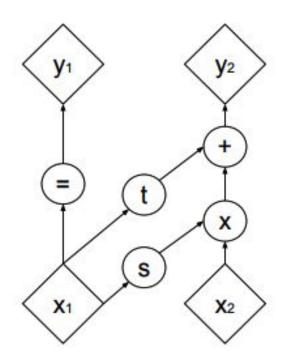
Assumption: N,

*#* input channels = *#* output channels

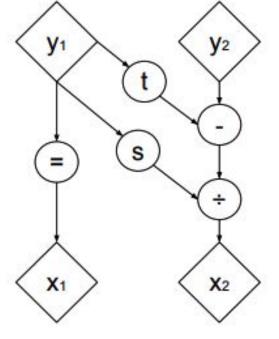
### Affine coupling:

(Dinh et al., 2017) Divide the input into two blocks  $x_1$ ,  $x_2$ 





(a) Forward propagation

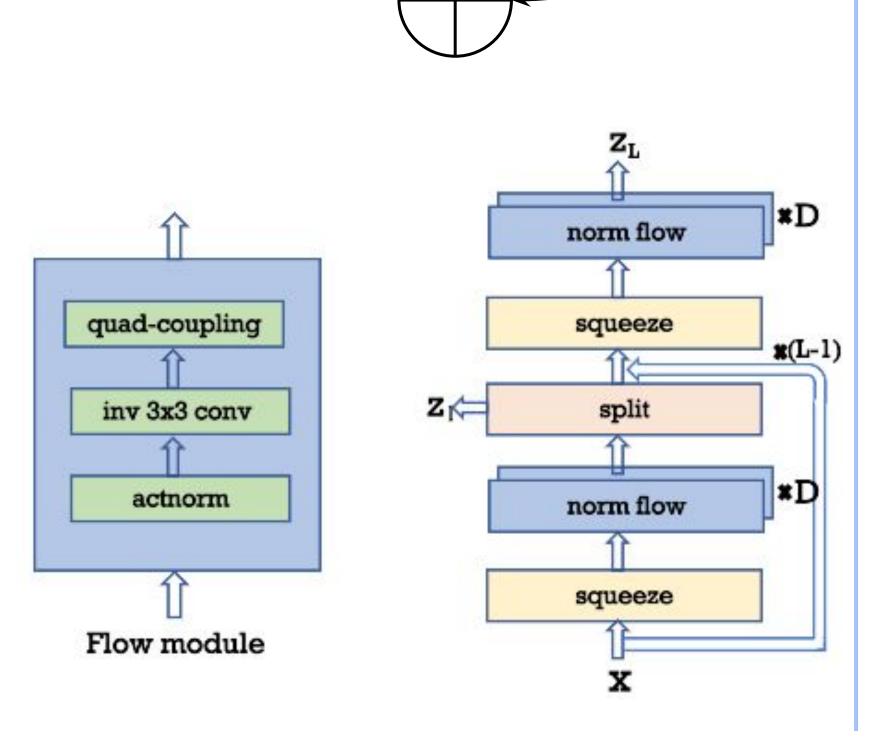


(b) Inverse propagation

-- output (y): concatenation of y<sub>i</sub>

-- f<sub>i</sub> and g<sub>i</sub> are learned

-- component wise addition



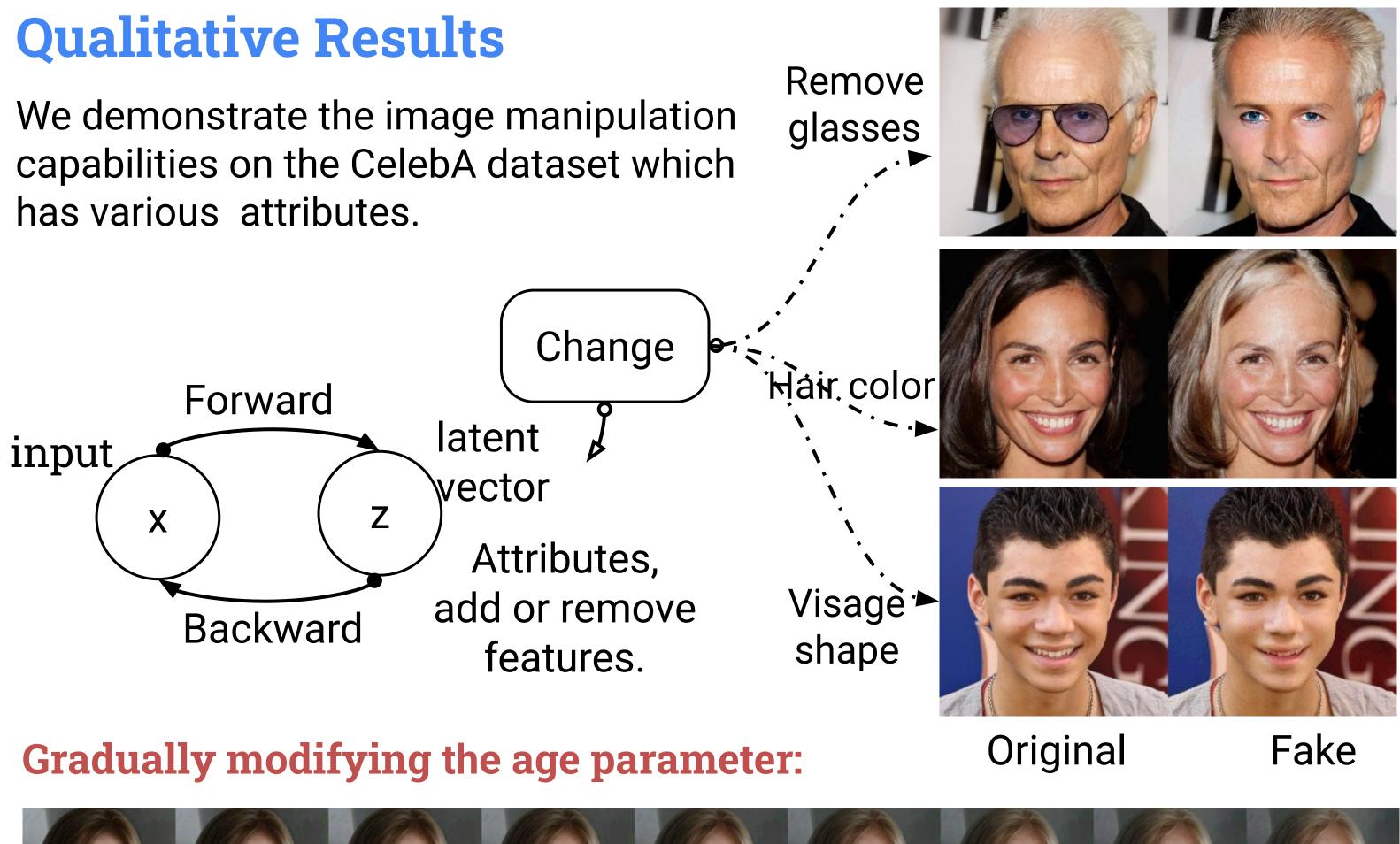
## **Benchmarks**

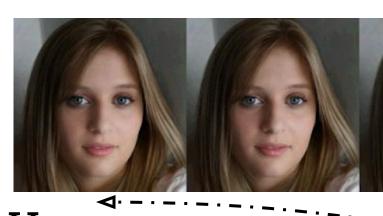
### Sai

### At

### Bit

|                                       | on one core CP     | •        | Dataset  | <u>Sampling</u><br>Emerging | <u>time (in sec)</u><br>CInC Flow |  |
|---------------------------------------|--------------------|----------|----------|-----------------------------|-----------------------------------|--|
|                                       | eded to sample     |          | Cifar10  | 2.45                        | 1.31                              |  |
| 100 images is almost two time faster. |                    |          | ImageNet | 32 4.96                     | 2.76                              |  |
| blation for Qua                       | ad Coupling        |          | Coupling | Emerging 3x3                | Our 3x3                           |  |
| Bits per dimens                       | sion               |          |          | Inv. conv.                  | Inv. conv.                        |  |
| for cifar10                           |                    |          | Affine   | 3.3851                      | 3.4209                            |  |
|                                       |                    |          | Quad     | 3.3612                      | 3.3879                            |  |
| its per dimens                        | ion comparisor     | 1        |          |                             |                                   |  |
| Dataset                               | Glow               | Emerging |          | CInC 3x3                    | +Quad                             |  |
| Cifar10                               | 3.36               | 3.34     | ŀ        | 3.3498                      | 3.347                             |  |
| ImageNet32                            | et32 4.09 4.09     |          |          | 4.0140                      | 4.0377                            |  |
| ImageNet64                            | mageNet64 3.81 3.8 |          |          | 3.8946                      | 3.8514                            |  |
| Galaxy 2.27                           |                    | /22      | 2.2739   | 2.2591                      |                                   |  |
|                                       |                    |          |          |                             |                                   |  |





Younger



# the 4th tractable probabilistic modeling workshop

tpm



Older