Generalized Parametric Path Problems

Uncertainty in Artificial Intelligence (UAI), 2021

Kshitij Gajjar (NUS, Singapore)
Girish Varma (IIIT-H, India)
Prerona Chatterjee (TIFR, India)
Jaikumar Radhakrishnan (TIFR, India)

Kshitij Gajjar (NUS, Singapore)
Girish Varma (IIIT-H, India)
Prerona Chatterjee (TIFR, India)
Jaikumar Radhakrishnan (TIFR, India)

A typical non-lockdown workday

- Top view of city roadmap.
- Given: Arrival time at the end point of each road is a linear function of the time of departure from its start.
- Find: Shortest path from s to t at start time $x=0$.

A typical non-lockdown workday

- Top view of city roadmap.
- Given: Travel time on each road is a linear function of time.
- Find: Shortest path from s to t at start time $x=0$.

A typical non-lockdown workday

- Top view of city roadmap.
- Given: Travel time on each road is a linear function of time.
- Find: Shortest path from s to t at start time $x=10$.

Edge weights: linear vs quadratic

- Earlier work: Computing with linear edge weights is "easy" or efficient.
- Our work: Computing with quadratic edge weights is "hard" or intractable.

Edge weights: linear vs quadratic

$$
\begin{aligned}
& \text { s } \xrightarrow{f_{1}(x)} \stackrel{f_{2}(x)}{\substack{f_{3}(x)}} \xrightarrow{f_{4}(x)} \boldsymbol{t} \\
& x \\
& f_{1}(x)
\end{aligned}
$$

Edge weights: linear vs quadratic

$$
\begin{array}{ll}
\boldsymbol{s} \xrightarrow{f_{1}(x)} \xrightarrow{f_{2}(x)} \stackrel{f_{3}(x)}{\longrightarrow} \stackrel{f_{4}(x)}{ } \boldsymbol{t} \\
x & f_{1}(x) \quad f_{2}\left(f_{1}(x)\right)
\end{array}
$$

Edge weights: linear vs quadratic

$$
\begin{gathered}
\boldsymbol{s} \xrightarrow{f_{1}(x)} \bullet \xrightarrow{f_{2}(x)} \stackrel{f_{3}(x)}{f_{4}(x)} \bullet t \\
x \\
f_{1}(x) \quad f_{2}\left(f_{1}(x)\right) \quad f_{3}\left(f_{2}\left(f_{1}(x)\right)\right)
\end{gathered}
$$

Edge weights: linear vs quadratic

If $f_{1}, f_{2}, f_{3}, f_{4}$ are linear, then
If $f_{1}, f_{2}, f_{3}, f_{4}$ are quadratic, then $f_{1} \circ f_{2} \circ$ $f_{1} \circ f_{2} \circ f_{3} \circ f_{4}$ is also linear. $f_{3} \circ f_{4}$ can be a polynomial of degree 16 .

Two settings: classical, pre-processing

- Finding the shortest path in real time: given a graph and a time x, find the shortest path to reach t, when departing from s at time x.
- In most practical scenarios, the layout of the road does not change on a day-to-day basis. Thus, we can pre-process the graph and store all the relevant information beforehand.
- Storage and retrieval of shortest paths: store all possible shortest paths, and quickly retrieve the shortest path at a given start time x.

Earlier work

- Theorem [Foschini, Hershberger, Suri, 2011] (Classical setting) If the edge weights are monotonically increasing linear functions, then the shortest path can be computed in polynomial time.
- Theorem [Foschini, Hershberger, Suri, 2011] (Pre-processing setting) If the edge weights are monotonically increasing linear functions, then the shortest path can be retrieved in polylogarithmic time.

Why monotonically increasing?

Braess' paradox

"This is not a real paradox but only a situation which is counter-intuitive." - Dietrich Braess, 1968

Braess' paradox

"This is not a real paradox but only a situation which is counter-intuitive." - Dietrich Braess, 1968

Scenario 1

Braess' paradox

"This is not a real paradox but only a situation which is counter-intuitive." - Dietrich Braess, 1968

Braess' paradox

"This is not a real paradox but only a situation which is counter-intuitive." - Dietrich Braess, 1968

Our results

Classical setting

- Theorem If the edge weights are linear functions, then the shortest path can be computed in polynomial time.
- Theorem If the edge weights are quadratic functions, then the shortest path cannot be computed in polynomial time, assuming $\mathbf{P} \neq \mathbf{N P}$.

Our results

Pre-processing setting

- Theorem If the edge weights are linear functions, then the shortest path can always be retrieved in polylogarithmic time.
- Theorem If the edge weights are quadratic functions, then there are graphs in which the shortest path cannot be retrieved in sublinear time.

Thank You!

