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• Top view of city roadmap.

• Given: Arrival time at the
end point of each road is a
linear function of the time
of departure from its start.

• Find: Shortest path from 𝑠
to 𝑡 at start time 𝑥 = 0.𝒔
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• Top view of city roadmap.

• Given: Travel time on each
road is a linear function of
time.

• Find: Shortest path from 𝑠
to 𝑡 at start time 𝑥 = 0.
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• Top view of city roadmap.

• Given: Travel time on each
road is a linear function of
time.

• Find: Shortest path from 𝑠
to 𝑡 at start time 𝑥 = 10.



• Earlier work: Computing with linear edge weights is “easy” or efficient.

• Our work: Computing with quadratic edge weights is “hard” or intractable.

Edge weights: linear vs quadratic
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If 𝑓-, 𝑓., 𝑓/, 𝑓0 are linear, then 
𝑓- ∘ 𝑓. ∘ 𝑓/ ∘ 𝑓0 is also linear.

𝒕
𝑓0(𝑥)

𝑓0(𝑓/(𝑓.(𝑓-(𝑥))))

If 𝑓-, 𝑓., 𝑓/, 𝑓0 are quadratic, then 𝑓- ∘ 𝑓. ∘
𝑓/ ∘ 𝑓0 can be a polynomial of degree 16.

Edge weights: linear vs quadratic



• Finding the shortest path in real time: given a graph and a time 𝑥, 
find the shortest path to reach 𝑡, when departing from 𝑠 at time 𝑥.

• In most practical scenarios, the layout of the road does not change 
on a day-to-day basis. Thus, we can pre-process the graph and store 
all the relevant information beforehand.

• Storage and retrieval of shortest paths: store all possible shortest 
paths, and quickly retrieve the shortest path at a given start time 𝑥.

Two settings: classical, pre-processing



• Theorem [Foschini, Hershberger, Suri, 2011] (Classical setting) If the
edge weights are monotonically increasing linear functions, then the
shortest path can be computed in polynomial time.

• Theorem [Foschini, Hershberger, Suri, 2011] (Pre-processing setting) If
the edge weights are monotonically increasing linear functions, then
the shortest path can be retrieved in polylogarithmic time.

Earlier work
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Braess’ paradox
“This is not a real paradox but only a situation which is counter-intuitive.” – Dietrich Braess, 1968
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Our results
Classical setting

• Theorem If the edge weights are linear functions, then the shortest
path can be computed in polynomial time.

• Theorem If the edge weights are quadratic functions, then the shortest
path cannot be computed in polynomial time, assuming P≠NP.



• Theorem If the edge weights are linear functions, then the shortest
path can always be retrieved in polylogarithmic time.

• Theorem If the edge weights are quadratic functions, then there are
graphs in which the shortest path cannot be retrieved in sublinear time.

Our results
Pre-processing setting
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