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1. Parametric Path Problems

Given i.) city road map as a directed acyclic graph (Fig 1),
ii.) time taken to cross each link as a function of start time
on the link and iii.) a starting time z(, find the shortest
path from s to t.

The time taken to reach t start from s at time x and
following the path P, is given by

06(05(a2(a1x + bl) + bg) + d5) —+ d@.

Fig 2 shows time taken in each of the 6 paths as a function
of time and Tab 1 lists shortest paths for every interval of
time. Parametrized path problems can model transporation
planning investment planning, multicurrency arbitrage etc.
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2. A Generalization

The input to a Generalized Path Problem (GPP) is a 4-
tuple (G, W, L, %), where G = (V U {s,t},E) is a di-
rected acyclic graph with two special vertices s and t, W =
{we RF 5 RF : e € E} Is a set of weight functions on
the edges of GG, L € R* is a vector used for computing the
cost of a path from the k parameters, and x;, € R" is the
initial parameter.

Problem (Generalized Path Problem (GPP)).
Input: An instance (G, W, L,xy) of GPP.
Output: An s-t path P = (eq,...,e,) which mazimizes

Wey (We, (X)) -+ ).

When k = 1, we call the GPP a scalar GPP. Sometimes
we ignore the Xy and just write (G, W, L).
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We also consider a version of GPP with preprocessing
(called PGPP), where we can preprocess the inputs (G, W, L)
and store them in a table which maps the initial values x
to their optimal paths. Such a mapping is very useful in sit-
uations where the underlying network does not change too
often and a large amount of computing power is available
for preprocessing (e.g., the road map of a city typically does
not change on a day-to-day basis).

Problem (GPP with Preprocessing (PGPP)).
Input: An instance (G, W, L) of GPP.
Output: A mapping of xq to optimal paths (see Tab 1).
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3. Applications

Parametrized path problems have been studied in Trans-
portation and Finance domains under specific assumptions.
For eg. the Time Dependent Shortest Path problem stud-
ied in the Transportation domain (Dean [2004], Dehne et
al. [2012], Foschini et al. [2014]) assumes monotone weight
functions (called FIFO). Our results does not assume these,
making them more widely applicable.

Braess Paradox in Transport Networks. Intuitively
adding an extra road to a road network reduces the traf-
fic. However Braess (1968) showed that adding a road can
increase traffic congestion. There have been documented
real-world occurrences: Stuttgart (1969), Seoul (2005), New
York City (2009). Since our results do not assume mono-
tone FIFO conditions, transport planning in some situations
where the paradox applies can be done using our algorithms.)
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4. Algorithm For Scalar GPP with

Linear Weight Functions

Theorem. There exists an algorithm that takes as input
a scalar GPP instance (G, W, L, xy) (where G has n ver-
tices and we(x) = a. - x + b for every edge e of G), and
outputs an optimal s-t path in G in O(n’) running time.

Our algorithm is similar to the Bellman-Ford-Moore short-
est path algorithm, where they keep track of minimum cost
paths. The only subtlety in our case is that we need to keep
track of both minimum and maximum cost paths with at
most £ edges from the start vertex s to every vertex v, as
k varies from 1 to n.
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5. Upper bound for Scalar PGPP

with Linear Weights

We study scalar PGPP, and show that the total number
of different shortest s-t paths (for different values of xy €
(—o0, >0)) is at most quasi-polynomial in n.

As the edge weights are linear and the composition of
linear functions is linear, the arrival time at ¢ after starting
from s at time x and travelling along a path P is a linear
function of x, called the cost of the path and denoted by
cost(P)(x). We show that the piecewise linear lower enve-
lope (denoted by costg (), indicated in pink in Fig 2) of the
cost functions of the s-t paths of G has n'°¢"+tOW) pieces.
Let p(f) denote the number of pieces in a piecewise linear
function f.

Theorem. Let P be the set of s-t paths in G. Then, the
cost function of the shortest s-t path, given by costq(x) =

PII}DiIlPCOSt(P)(SC), is a piecewise linear function such that
S

p(costq(x)) < nloentOl),

The key technical ingredient in the proof is that, when
cost functions are composed, the number of discontinuities
in the upper and lower envelope only grows additively.
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6. Hardness of Scalar GPP with

Non-linear Weights

We reduce an instance of the SETPARTITION (which is
NP-Hard) to an instance of Scalar GPP with the following
DAG having only 1 discontinous edge weight function. The
SETPARTITION problem asks if a given set of n integers
A ={ap,...,a,_1} can be partitioned into two subsets S
and A\ S such that they have the same sum. It can be
observed that the cost of the shortest path is 0 iff SET-
PARTITION instance has a solution.
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Theorem. Let (G, W, L,xq) be a GPP instance with a
special edge e*, where G has n vertices and w.(x) = a.x+
be for every edge e € E(G)\{e*}, and we(x) is piecewise
linear with 2 pieces. Then it 1s NP-hard to find an s-
t path whose cost approximates the cost of the optimal
s-t path in G to within a constant, both additively and
multiplicatively.

7. Lower bound for Scalar PGPP

with Non-linear Weights

Theorem. Let (G,W, L, xy) be a GPP instance with a
special edge €*, where G has n vertices and w.(x) = a.x+
be for every edge e € E(G)\{e*}, and we-(x) is piecewise
linear with 2 pieces. Then it 1s NP-hard to find an s-
t path whose cost approrimates the cost of the optimal
s-t path i G to within a constant, both additively and
multiplicatively.

Proof Idea: There exists a graph on n nodes with 2"
paths such that each paths shows up in the lower envelope.
Each time a new vertex is added to the graph, the number
of pieces in the shortest path cost function is doubled.

n=2
|1 -3x, ifx <1/3
folx) = {Sx 1, if x >1/3
2 — 3x, ifx <2/3
filx) = { —2, ifx>2/3
fo(x) fo(x)
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8. Hardness of Non-scalar GPP
with Linear Weights

We reduce an instance of the PRODUCTPARTITION (which
is NP-Hard) to an instance of GPP with the following DAG
having 2 dimensional linear edge weight function. The
PRODUCTPARTITION problem asks if a given set of n in-
tegers A = {ayp,...,a,_1} can be partitioned into two sub-
sets S and A\ S such that they have the same product. It
can be observed that the cost of the shortest path is 1 iff
PRODUCTPARTITION Iinstance has a solution.
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Theorem. Let (G,W, L,xq) be a GPP instance, where
G has n vertices and each edge e of G is labelled by a two
dimensional vector w.(x). The vertices s,t are labelled

by two dimensional vectors xg,ty, respectively. Then it
1s NP-hard to compute an optimal s-t path in G.
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