

Universal Semi-Supervised Semantic Segmentation

Tarun Kalluri¹, Girish Varma¹, Manmohan Chandraker², CV Jawahar¹

CVIT, IIIT Hyderabad¹ University of California San Diego²

Overview: Universal Segmentation

Obtain a common semantic segmentation model across widely disparate domains having limited labeled data.

A good universal model ensures that, across all domains,

- ✓ A single model is deployed
- ✓ Unlabeled data is used
- ✓ Performance is improved
- ✓ And label spaces (semantic content) may differ.

unsupervised images.

Challenge: Domain Shift + Different Labels

- ➤ Models trained on a single domain are not usable in other domains due to Domain Shift and Semantic Shift.
- > Training individual models for different domains results in deployment overhead, doesn't exploit shared structure among these domains.

	Source Unlabeled	Target Unlabeled	Joint Model	Mixed Labels	Prior works fall short in	
	Data	Data	Model	Support	addressing the semantic	
Fine Tuning	X	Х	X	✓	change, which we do by	
Semi-supervised [Hung 2018]	✓	X	X	NA	change, winch we do by	
CyCADA [Hoffman 2018]	X	1	1	X	using large scale	
Joint Training	X	X	✓	/	asing large seale	
Our Approach	✓	/	✓	/	unsupervised images	

Approach: Feature Alignment Using Entropy Regularization

Training Objective: Supervised + Unsupervised Losses

Unsupervised Losses

$$[v_{ij}] = \phi\left(\mathcal{E}\left(\mathcal{F}\left(x_u^{(i)}\right)\right), c^{(j)}\right)$$

Supervised Loss

$$= L_{sup} = \sum_{k} \frac{1}{N_l^{(k)}} \sum_{x_i \in D^{(k)}} \psi_k \left(y_i, \mathcal{G}_k \left(\mathcal{F} \left(x_i \right) \right) \right)$$

Total Loss

$$L_t = L_{sup} + \lambda_1 \cdot L_{u,c} + \lambda_2 \cdot L_{u,w}$$

Datasets

Experimental Results

Method	N		
	CS	CamVid	Avg.
Train on CS	55.07	48.52	51.80
Train on CVD	26.45	60.61	43.53
Hung et al. 2018	58.80	-	-
Souly <i>et al</i> . 2017	=	58.20	-
Univ-basic (\mathcal{L}_s)	53.14	65.33	59.24
Univ-cross (+ \mathcal{L}_c)	56.36	63.34	59.85
Univ-full (+ \mathcal{L}_c , \mathcal{L}_w)	55.92	64.72	60.32

Labeled Examples	CS	SUN	Avg.
1.5k 1.5k	64.23 15.61	15.47 42.52	39.85 29.07
Full(5.3k)	=	49.8	-
1.5k	58.01	31.55	44.78
1.5k	57.91	43.12	50.52
	Examples 1.5k 1.5k Full(5.3k) 1.5k	Examples 1.5k 64.23 1.5k 15.61 Full(5.3k) - 1.5k 58.01	1.5k 64.23 15.47 1.5k 15.61 42.52 Full(5.3k) - 49.8 1.5k 58.01 31.55

28% labeled data from SUN RGB dataset with no synthetic examples, recovers ~88% of performance obtained with full dataset.

Qualitative Improvements In Segmentation

New SOTA

with semi

supervised

data!

tSNE Embedding Visualization

Visually similar features, like Building and SideWalk from Cityscapes and CamVid are positively aligned, helping in learning agnostic discriminative features.