Advanced Mathematical Structures

Instructor: Girish Varma • Course Code: IMA410

5 problems • 5 marks each

1 Intersecting Families

- 1. Let n = 2k. Show that there are $2^{\binom{2k-1}{k-1}}$ intersecting families of k element subsets of [n] having the maximum number $\binom{2k-1}{k-1}$ of members. (3 marks)
- 2. Show that for every non-empty subset *A* of [n], there is an intersecting family \mathcal{F} of subsets of [n] of size 2^{n-1} with $A \in \mathcal{F}$. Show further that any two subsets *A*, *B* with $A \cap B \neq \emptyset$ are contained in a family with these properties. What about three pairwise intersecting sets?

(2 marks)

2 System of Distinct Representatives

- 1. How many different systems of distinct representatives are there for the sets $\{A_1, \dots, A_n\}$ where $A_i = [n] \setminus \{i\}$ where $n \ge 2$? (3 marks)
- 2. Let A_1, A_2, \dots, A_n be subsets of $\{1, 2, \dots, n\}$. Let M be the $n \times n$ matrix whose (i, j)th entry is 1 if $j \in A_i$ and 0 otherwise. Prove that the number of SDRs of (A_1, A_2, \dots, A_n) is at least $|\det(M)|$ (the determinant). (2 marks)

3 Rings, Fields and Vector Spaces

Consider the *n* dimensional vector space \mathbb{F}_p^n over the field \mathbb{F}_p (*p* is a prime).

- 1. Count the number of distinct tuples of vectors (v_1, \dots, v_r) such that v_i 's are linearly independent (need to justify). (2 marks)
- 2. Count the number of distinct 1 dimensional sub spaces (need to justify). (1 mark)
- 3. Count the number of distinct *r* dimensional sub spaces (need to justify). (2 marks)

P.T.O.

4 Inclusion Exclusion

- 1. Let $k \ge r$. Show that:
 - (a) For odd *r*,

$$\binom{k}{0} - \binom{k}{1} + \dots + (-1)^r \binom{k}{r} \le 0.$$

(b) For even *r*,

$$\binom{k}{0} - \binom{k}{1} + \dots + (-1)^r \binom{k}{r} \ge 0.$$

- 2. Let $A_1, ..., A_k \subseteq [n]$. For $S \subseteq [k]$, let $A_S = \bigcap_{i \in S} A_i$ and $A_{\phi} = [n]$. Then for $0 \leq r \leq k$, show that (using part 1.) (3 marks)
 - (a) For odd *r*,

$$\left|\overline{\cup_{i\in k}A_k}\right| \ge \sum_{S\subseteq [k]:|S|\le r} (-1)^{|S|} |A_S|.$$

(b) For even *r*,

$$\left|\overline{\bigcup_{i\in k}A_k}\right| \le \sum_{S\subseteq [k]:|S|\le r} (-1)^{|S|} |A_S|.$$

5 Pólya - Burnside Counting

Let *k* be a prime and $\mathcal{F} = \{f : [m]^k \to [n]\}$ (set of all functions from $[m]^k$ to [n]). *g* is a cyclic reordering of *f*, if $\exists i \in [k]$ such that $g(x) = f(\sigma^i(x))$ where $\sigma^i(x) = x_i \cdots x_n x_1 \cdots x_{i-1}$.

 Find the number of distinct functions, which are invariant under cyclic reordering. That is find
 (2 marks)

$$\left|\left\{f \in \mathcal{F} : \forall i \in [k], \forall x \in [m]^k, f(x) = f(\sigma^i(x))\right\}\right|.$$

- Find the number of distinct functions in *F* if cyclic reordering are considered the same.
 (2 marks)
- 3. Show that *k* divides $n^{m^k} n^t$ where $t = \frac{m^k m}{k} + m$. (1 mark)

(2 marks)