PROBABILITY & STATISTICS

MID-SEMESTER EXAM

Instructor: Girish Varma · Course Code: MA6.101 · IIIT Hyderabad

5 problems · 5 marks each

1 Independence

For each one of the statements below, give either a proof or a counterexample showing that the statement is not always true.

- 1. If events *A* and *B* are independent, then the events *A* and *B^c* (complement) are also independent. (2 marks)
- 2. Let A, B, and C be events associated with a common probabilistic model, and assume that 0 < P(C) < 1. Suppose that A and B are conditionally independent given C. Then, A and B are conditionally independent given C^c . (2 marks)
- 3. Let *X* and *Y* be independent random variables. Then, $var(X + Y) \ge var(X)$. (1 mark)

2 Duplicates

A box has *n* balls numbered from 1 to *n*. Suppose you keep picking a ball randomly each time and put it back in the box before the next pick.

- 1. Let *X* be the random variable denoting the first time at which you have seen a ball twice. Find the PMF of *X*. (2 marks)
- 2. Let T_i be the random variable corresponding to the time taken for seeing a new ball, after you have seen i different balls. Find the PMF of T_i . (2 marks)
- 3. Let T be the random variable corresponding to the first time at which you have encountered all the n balls. Find $\mathbb{E}T$. (1 mark)

3 Randomized Coloring

Given a (undirected) graph G = (V, E), and a 3-color assignment $a : V \to \{R, G, B\}$ is an assignment of colors R, G, B to the vertices of the graph. Given an assignment a, the set of monochromatic edges $E(a) = \{(u, v) \in E : a(u) = a(v)\}$, is the set of edges that has same colors for endpoints. Let a be randomly chosen, ie for every $v \in V$, it is chosen to be R, G, B uniformly and independent of the other vertices.

- 1. For any edge $e \in E$, let X_e be the random variable which is 1 when e is monochromatic and 0 otherwise. Show that the set of random variables $\{X_e\}_{e \in E}$ are pairwise independent. Show that they are not independent. (1 mark)
- 2. Let *Y* be the random variable corresponding to the number of non-monochromatic edges. That is $Y = |E \setminus E(a)|$. Find $\mathbb{E}[Y]$. (1 mark)
- 3. Show that there cannot be a graph for which all 3-color assignments make < 2|E|/3 edges non-monochromatic. That is for any graph G, there exists an assignment $a: V \to \{R, G, B\}$ such that the number of non-monochromatic edges is at least 2|E|/3. (1 mark)
- 4. Show that: $P(Y \ge |E|/2) \ge 1/3$. (1 mark)
- 5. Devise a method (which by obtaining multiple independent copies of Y by randomly choosing a's independently) that can find an assignment for which the number of non-monochromatic edges is at least |E|/2 with probability at least 99/100. (1 mark)

4 Continuous Random Variables

The random variable X is exponential with parameter 1. Given the value x of X, the random variable Y is exponential with parameter equal to x (and mean 1/x).

- 1. Find the joint PDF of X and Y. (1 mark)
- 2. Find the marginal PDF of *Y*. (1 mark)
- 3. Find the conditional PDF of X, given that Y = 2. (1 mark)
- 4. Find the conditional expectation of X, given that Y = 2. (1 mark)
- 5. Find the conditional PDF of *Y*, given that X = 2 and $Y \ge 3$. (1 mark)

5 Signal Classification

Consider the communication of binary-valued messages over some transmission medium. Specifically, any message transmitted between locations is one of two possible symbols, 0 or 1. Each symbol occurs with equal probability. It is also known that any numerical value sent over this wire is subject to distortion; namely, if the value X is transmitted, the value Y received at the other end is described by Y = X + N where the random variable N represents additive noise that is independent of X. The noise N is normally distributed with mean $\mu = 0$ and variance $\sigma^2 = 4$.

- 1. Suppose the transmitter encodes the symbol 0 with the value X = -2 and the symbol 1 with the value X = 2. At the other end, the received message is decoded according to the following rules:
 - (a) If $Y \ge 0$, then conclude the symbol 1 was sent.
 - (b) If Y < 0 then conclude the symbol 0 was sent.

Determine the probability of error for this encoding/decoding scheme. Answer can be in terms of Gaussian integrals (CDF of Normal Distribution). (2 marks)

- 2. In an effort to reduce the probability of error, the following modifications are made. The transmitter encodes the symbols with a repeated scheme. The symbol 0 is encoded with the vector $X = [-2, -2, -2]^T$ and the symbol 1 is encoded with the vector $X = [2, 2, 2]^T$. The vector $Y = [Y_1, Y_2, Y_3]^T$ received at the other end is described by Y = X + N. The vector $N = [N_1, N_2, N_3]^T$ represents the noise vector where each N_i is a random variable assumed to be normally distributed with mean $\mu = 0$ and variance $\sigma^2 = 4$. Assume each N_i is independent of each other and independent of the X_i 's. Each component value of Y is decoded with the same rule as in part (1.). The receiver then uses a majority rule to determine which symbol was sent. The receiver's decoding rules are:
 - (a) If 2 or more components of Y are greater than 0, then conclude the symbol 1 was sent.
 - (b) If 2 or more components of Y are less than 0, then conclude the symbol 0 was sent.

Determine the probability of error for this modified encoding/decoding scheme. (3 marks)